pytorch制作自己的LMDB数据操作示例


Posted in Python onDecember 18, 2019

本文实例讲述了pytorch制作自己的LMDB数据操作。分享给大家供大家参考,具体如下:

前言

记录下pytorch里如何使用lmdb的code,自用

制作部分的Code

code就是ASTER里数据制作部分的代码改了点,aster_train.txt里面就算图片的完整路径每行一个,图片同目录下有同名的txt,里面记着jpg的标签

import os
import lmdb # install lmdb by "pip install lmdb"
import cv2
import numpy as np
from tqdm import tqdm
import six
from PIL import Image
import scipy.io as sio
from tqdm import tqdm
import re
def checkImageIsValid(imageBin):
 if imageBin is None:
  return False
 imageBuf = np.fromstring(imageBin, dtype=np.uint8)
 img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
 imgH, imgW = img.shape[0], img.shape[1]
 if imgH * imgW == 0:
  return False
 return True
def writeCache(env, cache):
 with env.begin(write=True) as txn:
  for k, v in cache.items():
   txn.put(k.encode(), v)
def _is_difficult(word):
 assert isinstance(word, str)
 return not re.match('^[\w]+$', word)
def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True):
 """
 Create LMDB dataset for CRNN training.
 ARGS:
   outputPath  : LMDB output path
   imagePathList : list of image path
   labelList   : list of corresponding groundtruth texts
   lexiconList  : (optional) list of lexicon lists
   checkValid  : if true, check the validity of every image
 """
 assert(len(imagePathList) == len(labelList))
 nSamples = len(imagePathList)
 env = lmdb.open(outputPath, map_size=1099511627776)#最大空间1048576GB
 cache = {}
 cnt = 1
 for i in range(nSamples):
  imagePath = imagePathList[i]
  label = labelList[i]
  if len(label) == 0:
   continue
  if not os.path.exists(imagePath):
   print('%s does not exist' % imagePath)
   continue
  with open(imagePath, 'rb') as f:
   imageBin = f.read()
  if checkValid:
   if not checkImageIsValid(imageBin):
    print('%s is not a valid image' % imagePath)
    continue
  #数据库中都是二进制数据
  imageKey = 'image-%09d' % cnt#9位数不足填零
  labelKey = 'label-%09d' % cnt
  cache[imageKey] = imageBin
  cache[labelKey] = label.encode()
  if lexiconList:
   lexiconKey = 'lexicon-%09d' % cnt
   cache[lexiconKey] = ' '.join(lexiconList[i])
  if cnt % 1000 == 0:
   writeCache(env, cache)
   cache = {}
   print('Written %d / %d' % (cnt, nSamples))
  cnt += 1
 nSamples = cnt-1
 cache['num-samples'] = str(nSamples).encode()
 writeCache(env, cache)
 print('Created dataset with %d samples' % nSamples)
def get_sample_list(txt_path:str):
  with open(txt_path,'r') as fr:
    jpg_list=[x.strip() for x in fr.readlines() if os.path.exists(x.replace('.jpg','.txt').strip())]
  txt_content_list=[]
  for jpg in jpg_list:
    label_path=jpg.replace('.jpg','.txt')
    with open(label_path,'r') as fr:
      try:
        str_tmp=fr.readline()
      except UnicodeDecodeError as e:
        print(label_path)
        raise(e)
      txt_content_list.append(str_tmp.strip())
  return jpg_list,txt_content_list
if __name__ == "__main__":
 txt_path='/home/gpu-server/disk/disk1/NumberData/8NumberSample/aster_train.txt'
 lmdb_output_path = '/home/gpu-server/project/aster/dataset/train'
 imagePathList,labelList=get_sample_list(txt_path)
 createDataset(lmdb_output_path, imagePathList, labelList)

读取部分

这里用的pytorch的dataloader,简单记录一下,人比较懒,代码就直接抄过来,不整理拆分了,重点看__getitem__

from __future__ import absolute_import
# import sys
# sys.path.append('./')
import os
# import moxing as mox
import pickle
from tqdm import tqdm
from PIL import Image, ImageFile
import numpy as np
import random
import cv2
import lmdb
import sys
import six
import torch
from torch.utils import data
from torch.utils.data import sampler
from torchvision import transforms
from lib.utils.labelmaps import get_vocabulary, labels2strs
from lib.utils import to_numpy
ImageFile.LOAD_TRUNCATED_IMAGES = True
from config import get_args
global_args = get_args(sys.argv[1:])
if global_args.run_on_remote:
 import moxing as mox
 #moxing是一个分布式的框架 跳过
class LmdbDataset(data.Dataset):
 def __init__(self, root, voc_type, max_len, num_samples, transform=None):
  super(LmdbDataset, self).__init__()
  if global_args.run_on_remote:
   dataset_name = os.path.basename(root)
   data_cache_url = "/cache/%s" % dataset_name
   if not os.path.exists(data_cache_url):
    os.makedirs(data_cache_url)
   if mox.file.exists(root):
    mox.file.copy_parallel(root, data_cache_url)
   else:
    raise ValueError("%s not exists!" % root)
   self.env = lmdb.open(data_cache_url, max_readers=32, readonly=True)
  else:
   self.env = lmdb.open(root, max_readers=32, readonly=True)
  assert self.env is not None, "cannot create lmdb from %s" % root
  self.txn = self.env.begin()
  self.voc_type = voc_type
  self.transform = transform
  self.max_len = max_len
  self.nSamples = int(self.txn.get(b"num-samples"))
  self.nSamples = min(self.nSamples, num_samples)
  assert voc_type in ['LOWERCASE', 'ALLCASES', 'ALLCASES_SYMBOLS','DIGITS']
  self.EOS = 'EOS'
  self.PADDING = 'PADDING'
  self.UNKNOWN = 'UNKNOWN'
  self.voc = get_vocabulary(voc_type, EOS=self.EOS, PADDING=self.PADDING, UNKNOWN=self.UNKNOWN)
  self.char2id = dict(zip(self.voc, range(len(self.voc))))
  self.id2char = dict(zip(range(len(self.voc)), self.voc))
  self.rec_num_classes = len(self.voc)
  self.lowercase = (voc_type == 'LOWERCASE')
 def __len__(self):
  return self.nSamples
 def __getitem__(self, index):
  assert index <= len(self), 'index range error'
  index += 1
  img_key = b'image-%09d' % index
  imgbuf = self.txn.get(img_key)
  #由于Image.open需要一个类文件对象 所以这里需要把二进制转为一个类文件对象
  buf = six.BytesIO()
  buf.write(imgbuf)
  buf.seek(0)
  try:
   img = Image.open(buf).convert('RGB')
   # img = Image.open(buf).convert('L')
   # img = img.convert('RGB')
  except IOError:
   print('Corrupted image for %d' % index)
   return self[index + 1]
  # reconition labels
  label_key = b'label-%09d' % index
  word = self.txn.get(label_key).decode()
  if self.lowercase:
   word = word.lower()
  ## fill with the padding token
  label = np.full((self.max_len,), self.char2id[self.PADDING], dtype=np.int)
  label_list = []
  for char in word:
   if char in self.char2id:
    label_list.append(self.char2id[char])
   else:
    ## add the unknown token
    print('{0} is out of vocabulary.'.format(char))
    label_list.append(self.char2id[self.UNKNOWN])
  ## add a stop token
  label_list = label_list + [self.char2id[self.EOS]]
  assert len(label_list) <= self.max_len
  label[:len(label_list)] = np.array(label_list)
  if len(label) <= 0:
   return self[index + 1]
  # label length
  label_len = len(label_list)
  if self.transform is not None:
   img = self.transform(img)
  return img, label, label_len

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
python编写爬虫小程序
May 14 Python
python3音乐播放器简单实现代码
Apr 20 Python
python实现类之间的方法互相调用
Apr 29 Python
解决tensorflow测试模型时NotFoundError错误的问题
Jul 27 Python
python numpy数组的索引和切片的操作方法
Oct 20 Python
python处理自动化任务之同时批量修改word里面的内容的方法
Aug 23 Python
Python中的上下文管理器相关知识详解
Sep 19 Python
Python通过Manager方式实现多个无关联进程共享数据的实现
Nov 07 Python
Python3实现将一维数组按标准长度分隔为二维数组
Nov 29 Python
tensorflow与numpy的版本兼容性问题的解决
Jan 08 Python
Python Pandas pandas.read_sql函数实例用法
Jun 21 Python
python实现手机推送 代码也就10行左右
Apr 12 Python
Python Gluon参数和模块命名操作教程
Dec 18 #Python
python turtle 绘制太极图的实例
Dec 18 #Python
Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例
Dec 18 #Python
简单了解Python读取大文件代码实例
Dec 18 #Python
python 比较2张图片的相似度的方法示例
Dec 18 #Python
使用Python的Turtle库绘制森林的实例
Dec 18 #Python
python3 requests库实现多图片爬取教程
Dec 18 #Python
You might like
PHP学习笔记之三 数据库基本操作
2011/01/17 PHP
php中防止伪造跨站请求的小招式
2011/09/02 PHP
ecshop后台编辑器替换成ueditor编辑器
2015/03/03 PHP
php实现点击可刷新验证码
2015/11/07 PHP
简单实现PHP留言板功能
2016/12/21 PHP
通过继承IHttpHandle实现JS插件的组织与管理
2010/07/13 Javascript
判断多个input type=file是否有已经选择好文件的代码
2012/05/23 Javascript
事件冒泡是什么如何用jquery阻止事件冒泡
2013/03/20 Javascript
js中string转int把String类型转化成int类型
2014/08/13 Javascript
nodejs npm package.json中文文档
2014/09/04 NodeJs
jQuery检测返回值的数据类型
2015/07/13 Javascript
jQuery实时显示鼠标指针位置和键盘ASCII码
2016/03/28 Javascript
浅谈JavaScript的函数及作用域
2016/12/30 Javascript
Jquery uploadify 多余的Get请求(404错误)的解决方法
2017/01/26 Javascript
微信小程序 chooseImage选择图片或者拍照
2017/04/07 Javascript
详解JS中的this、apply、call、bind(经典面试题)
2017/09/19 Javascript
Vue-router路由判断页面未登录跳转到登录页面的实例
2017/10/26 Javascript
基于Vue2x的图片预览插件的示例代码
2018/05/14 Javascript
Vue实现商品飞入购物车效果(电商项目)
2019/11/26 Javascript
微信小程序实现签到弹窗动画
2020/09/21 Javascript
jQuery实现动态操作table行
2020/11/23 jQuery
Python回调函数用法实例详解
2015/07/02 Python
Python简单定义与使用字典dict的方法示例
2017/07/25 Python
python之django母板页面的使用
2018/07/03 Python
python使用scrapy发送post请求的坑
2018/09/04 Python
Python3.5内置模块之os模块、sys模块、shutil模块用法实例分析
2019/04/27 Python
python 非线性规划方式(scipy.optimize.minimize)
2020/02/11 Python
pandas针对excel处理的实现
2021/01/15 Python
python利用xpath爬取网上数据并存储到django模型中
2021/02/26 Python
html5简单示例_动力节点Java学院整理
2017/07/07 HTML / CSS
施惠特软件测试面试题以及笔试题
2015/05/13 面试题
应届医学毕业生求职信分享
2013/12/02 职场文书
中学生国旗下讲话稿
2014/04/26 职场文书
继续教育个人总结
2015/03/03 职场文书
教师求职信怎么写
2015/03/20 职场文书
Go微服务项目配置文件的定义和读取示例详解
2022/06/21 Golang