教你用Python写安卓游戏外挂


Posted in Python onJanuary 11, 2018

本次我们选择的安卓游戏对象叫“单词英雄”,大家可以先下载这个游戏。

游戏的界面是这样的:

教你用Python写安卓游戏外挂

通过选择单词的意思进行攻击,选对了就正常攻击,选错了就象征性的攻击一下。玩了一段时间之后琢磨可以做成自动的,通过PIL识别图片里的单词和选项,然后翻译英文成中文意思,根据中文模糊匹配选择对应的选项。

查找了N多资料以后开始动手,程序用到以下这些东西:

PIL:Python Imaging Library 大名鼎鼎的图片处理模块

pytesser:Python下用来驱动tesseract-ocr来进行识别的模块

Tesseract-OCR:图像识别引擎,用来把图像识别成文字,可以识别英文和中文,以及其它语言

autopy:Python下用来模拟操作鼠标和键盘的模块。

安装步骤(win7环境):

(1)安装PIL,下载地址:http://www.pythonware.com/products/pil/,安装Python Imaging Library 1.1.7 for Python 2.7。

(2)安装pytesser,下载地址:http://code.google.com/p/pytesser/,下载解压后直接放在
C:\Python27\Lib\site-packages下,在文件夹下建立pytesser.pth文件,内容为C:\Python27\Lib\site-packages\pytesser_v0.0.1

(3)安装Tesseract OCR engine,下载:https://github.com/tesseract-ocr/tesseract/wiki/Downloads,下载Windows installer of tesseract-ocr 3.02.02 (including English language data)的安装文件,进行安装。

(4)安装语言包,在https://github.com/tesseract-ocr/tessdata下载chi_sim.traineddata简体中文语言包,放到安装的Tesseract OCR目标下的tessdata文件夹内,用来识别简体中文。

(5)修改C:\Python27\Lib\site-packages\pytesser_v0.0.1下的pytesser.py的函数,将原来的image_to_string函数增加语音选择参数language,language='chi_sim'就可以用来识别中文,默认为eng英文。

改好后的pytesser.py:

"""OCR in Python using the Tesseract engine from Google
http://code.google.com/p/pytesser/
by Michael J.T. O'Kelly
V 0.0.1, 3/10/07"""
import Image
import subprocess
import util
import errors
tesseract_exe_name = 'tesseract' # Name of executable to be called at command line
scratch_image_name = "temp.bmp" # This file must be .bmp or other Tesseract-compatible format
scratch_text_name_root = "temp" # Leave out the .txt extension
cleanup_scratch_flag = True # Temporary files cleaned up after OCR operation
def call_tesseract(input_filename, output_filename, language):
 """Calls external tesseract.exe on input file (restrictions on types),
 outputting output_filename+'txt'"""
 args = [tesseract_exe_name, input_filename, output_filename, "-l", language]
 proc = subprocess.Popen(args)
 retcode = proc.wait()
 if retcode!=0:
  errors.check_for_errors()
def image_to_string(im, cleanup = cleanup_scratch_flag, language = "eng"):
 """Converts im to file, applies tesseract, and fetches resulting text.
 If cleanup=True, delete scratch files after operation."""
 try:
  util.image_to_scratch(im, scratch_image_name)
  call_tesseract(scratch_image_name, scratch_text_name_root,language)
  text = util.retrieve_text(scratch_text_name_root)
 finally:
  if cleanup:
   util.perform_cleanup(scratch_image_name, scratch_text_name_root)
 return text
def image_file_to_string(filename, cleanup = cleanup_scratch_flag, graceful_errors=True, language = "eng"):
 """Applies tesseract to filename; or, if image is incompatible and graceful_errors=True,
 converts to compatible format and then applies tesseract. Fetches resulting text.
 If cleanup=True, delete scratch files after operation."""
 try:
  try:
   call_tesseract(filename, scratch_text_name_root, language)
   text = util.retrieve_text(scratch_text_name_root)
  except errors.Tesser_General_Exception:
   if graceful_errors:
    im = Image.open(filename)
    text = image_to_string(im, cleanup)
   else:
    raise
 finally:
  if cleanup:
   util.perform_cleanup(scratch_image_name, scratch_text_name_root)
 return text
if __name__=='__main__':
 im = Image.open('phototest.tif')
 text = image_to_string(im)
 print text
 try:
  text = image_file_to_string('fnord.tif', graceful_errors=False)
 except errors.Tesser_General_Exception, value:
  print "fnord.tif is incompatible filetype. Try graceful_errors=True"
  print value
 text = image_file_to_string('fnord.tif', graceful_errors=True)
 print "fnord.tif contents:", text
 text = image_file_to_string('fonts_test.png', graceful_errors=True)
 print text

(6)安装autopy,下载地址:https://pypi.python.org/pypi/autopy,下载autopy-0.51.win32-py2.7.exe进行安装,用来模拟鼠标操作。

说下程序的思路:

1. 首先是通过模拟器在WINDOWS下执行安卓的程序,然后用PicPick进行截图,将战斗画面中需要用到的区域进行测量,记录下具体在屏幕上的位置区域,用图中1来判断战斗是否开始(保存下来用作比对),用2,3,4,5,6的区域抓取识别成文字。

教你用Python写安卓游戏外挂

计算图片指纹的程序:

def get_hash(self, img):
    #计算图片的hash值
    image = img.convert("L")
    pixels = list(image.getdata())
    avg = sum(pixels) / len(pixels)
    return "".join(map(lambda p : "1" if p > avg else "0", pixels))

图片识别成字符:

#识别出对应位置图像成字符,把字符交给chose处理
  def getWordMeaning(self):
    pic_up = ImageGrab.grab((480,350, 480+300, 350+66))
    pic_aws1 = ImageGrab.grab((463,456, 463+362, 456+45))
    pic_aws2 = ImageGrab.grab((463,530, 463+362, 530+45))
    pic_aws3 = ImageGrab.grab((463,601, 463+362, 601+45))
    pic_aws4 = ImageGrab.grab((463,673, 463+362, 673+45))
    str_up = image_to_string(pic_up).strip().lower()
    #判断当前单词和上次识别单词相同,就不继续识别
    if str_up <> self.lastWord:
      #如果题目单词是英文,选项按中文进行识别
      if str_up.isalpha():
        eng_up = self.dt[str_up].decode('gbk') if self.dt.has_key(str_up) else ''
        chs1 = image_to_string(pic_aws1, language='chi_sim').decode('utf-8').strip()
        chs2 = image_to_string(pic_aws2, language='chi_sim').decode('utf-8').strip()
        chs3 = image_to_string(pic_aws3, language='chi_sim').decode('utf-8').strip()
        chs4 = image_to_string(pic_aws4, language='chi_sim').decode('utf-8').strip()
        print str_up, ':', eng_up
        self.chose(eng_up, (chs1, chs2, chs3, chs4))
      #如果题目单词是中文,选项按英文进行识别
      else:
        chs_up = image_to_string(pic_up, language='chi_sim').decode('utf-8').strip()
        eng1 = image_to_string(pic_aws1).strip()
        eng2 = image_to_string(pic_aws2).strip()
        eng3 = image_to_string(pic_aws3).strip()
        eng4 = image_to_string(pic_aws4).strip()
        
        e2c1 = self.dt[eng1].decode('gbk') if self.dt.has_key(eng1) else ''
        e2c2 = self.dt[eng2].decode('gbk') if self.dt.has_key(eng2) else ''
        e2c3 = self.dt[eng3].decode('gbk') if self.dt.has_key(eng3) else ''
        e2c4 = self.dt[eng4].decode('gbk') if self.dt.has_key(eng4) else ''
        print chs_up
        self.chose(chs_up, (e2c1, e2c2, e2c3, e2c4))
      self.lastWord = str_up
    return str_up

2. 对于1位置的图片提前截一个保存下来,然后通过计算当前画面和保存下来的图片的距离,判断如果小于40的就表示已经到了选择界面,然后识别2,3,4,5,6成字符,判断如果2位置识别成英文字符的,就用2解析出来的英文在字典中获取中文意思,然后再通过2的中文意思和3,4,5,6文字进行匹配,匹配上汉字最多的就做选择,如果匹配不上默认返回最后一个。之前本来考虑是用Fuzzywuzzy来进行模糊匹配算相似度的,不过后来测试了下对于中文匹配的效果不好,就改成按汉字单个进行匹配计算相似度。

匹配文字进行选择:

#根据传入的题目和选项进行匹配选择
  def chose(self, g, chs_list):
    j, max_score = -1, 0
    same_list = None
    #替换掉题目里的特殊字符
    re_list = [u'~', u',', u'.', u';', u' ', u'a', u'V', u'v', u'i', u'n', u'【', u')', u'_', u'W', u'd', u'j', u'-', u't']
    for i in re_list:
      g = g.replace(i, '')
    print type(g)
    #判断2个字符串中相同字符,相同字符最多的为最佳答案
    for i, chsWord in enumerate(chs_list):
      print type(chsWord)
      l = [x for x in g if x in chsWord and len(x)>0]
      score = len(l) if l else 0
      
      if score > max_score:
        max_score = score
        j = i
        same_list = l
    #如果没有匹配上默认选最后一个
    if j ==-1:
      print '1. %s; 2. %s; 3. %s; 4. %s; Not found choice.' % (chs_list[0], chs_list[1], chs_list[2], chs_list[3])
    else:
      print '1. %s; 2. %s; 3. %s; 4. %s; choice: %s' % (chs_list[0], chs_list[1], chs_list[2], chs_list[3], chs_list[j])
      for k, v in enumerate(same_list):
        print str(k) + '.' + v,
    order = j + 1
    self.mouseMove(order)
    return order

3.最后通过mouseMove调用autopy操作鼠标点击对应位置进行选择。

程序运行的录像:http://v.youku.com/v_show/id_XMTYxNTAzMDUwNA==.html

程序完成后使用正常,因为图片识别准确率和字典的问题,正确率约为70%左右,效果还是比较满意。程序总体来说比较简单,做出来也就是纯粹娱乐一下,串联使用了图片识别、中文模糊匹配、鼠标模拟操作,算是个简单的小外挂吧,源程序和用到的文件如下:

http://git.oschina.net/highroom/My-Project/tree/master/Word%20Hero

Python 相关文章推荐
深入分析在Python模块顶层运行的代码引起的一个Bug
Jul 04 Python
举例讲解Python中的算数运算符的用法
May 13 Python
简介Python中用于处理字符串的center()方法
May 18 Python
Python爬取附近餐馆信息代码示例
Dec 09 Python
在scrapy中使用phantomJS实现异步爬取的方法
Dec 17 Python
Python实现将多个空格换为一个空格.md的方法
Dec 20 Python
解决Django migrate不能发现app.models的表问题
Aug 31 Python
解决python DataFrame 打印结果不换行问题
Apr 09 Python
利用PyQt5+Matplotlib 绘制静态/动态图的实现代码
Jul 13 Python
Python命令行参数argv和argparse该如何使用
Feb 08 Python
python中time tzset()函数实例用法
Feb 18 Python
基于Python的EasyGUI学习实践
May 07 Python
python实现学生管理系统
Jan 11 #Python
linecache模块加载和缓存文件内容详解
Jan 11 #Python
Python实现将MySQL数据库表中的数据导出生成csv格式文件的方法
Jan 11 #Python
python+django+sql学生信息管理后台开发
Jan 11 #Python
hmac模块生成加入了密钥的消息摘要详解
Jan 11 #Python
快速了解Python中的装饰器
Jan 11 #Python
简单了解python模块概念
Jan 11 #Python
You might like
我的论坛源代码(二)
2006/10/09 PHP
PHP开发环境配置(MySQL数据库安装图文教程)
2010/04/28 PHP
PHP 面向对象程序设计(oop)学习笔记 (五) - PHP 命名空间
2014/06/12 PHP
php实现发送微信模板消息的方法
2015/03/07 PHP
php判断两个日期之间相差多少个月份的方法
2015/06/18 PHP
PHP使用file_get_content设置头信息的方法
2016/02/14 PHP
PHP 的比较运算与逻辑运算详解
2016/05/12 PHP
laravel7学习之无限级分类的最新实现方法
2020/09/30 PHP
prototype Element学习笔记(Element篇三)
2008/10/26 Javascript
IE下使用cloneNode注意事项分享
2012/11/22 Javascript
浅谈checkbox的一些操作(实战经验)
2013/11/20 Javascript
jquery实现下拉菜单的二级联动利用json对象从DB取值显示联动
2014/03/27 Javascript
调用jQuery滑出效果时闪烁的解决方法
2014/03/27 Javascript
JavaScript实现下拉列表框数据增加、删除、上下排序的方法
2015/08/11 Javascript
js实现商品抛物线加入购物车特效
2020/11/18 Javascript
js验证框架之RealyEasy验证详解
2016/06/08 Javascript
微信小程序 HTTPS报错整理常见问题及解决方案
2016/12/14 Javascript
详解基于React.js和Node.js的SSR实现方案
2019/03/21 Javascript
vue axios封装及API统一管理的方法
2019/04/18 Javascript
ios中视频的最后一桢问题解决
2019/05/14 Javascript
js 判断当前时间是否处于某个一个时间段内
2019/09/19 Javascript
使用C语言扩展Python程序的简单入门指引
2015/04/14 Python
Flask框架Jinjia模板常用语法总结
2018/07/19 Python
python获取命令行参数实例方法讲解
2020/11/02 Python
python 爬虫如何实现百度翻译
2020/11/16 Python
CSS实现限制字数功能当对象内文本溢出时显示省略标记
2014/08/20 HTML / CSS
颇特女士:NET-A-PORTER(直邮中国)
2020/07/11 全球购物
法雷奥SQA(electric)面试问题
2016/01/23 面试题
模范教师事迹材料
2014/02/10 职场文书
学生保证书范文
2014/04/28 职场文书
租车协议书范本2014
2014/11/17 职场文书
鲁冰花观后感
2015/06/10 职场文书
元素水平垂直居中的方式
2021/03/31 HTML / CSS
Matlab求解数组中的最大值及它所在的具体位置
2021/04/16 Python
Java基础之线程锁相关知识总结
2021/06/30 Java/Android
Linux下搭建SFTP服务器的命令详解
2022/06/25 Servers