python数据分析之单因素分析线性拟合及地理编码


Posted in Python onJune 25, 2022

一、单因素分析线性拟合

  • 功能:线性拟合,单因素分析,对散点图进行线性拟合,并放大散点图的局部位置
  • 输入:某个xlsx文件,包含'患者密度(人/10万人)'和'人口密度(人/平方千米)'两列
  • 输出:对这两列数据进行线性拟合,绘制散点

实现代码:

import pandas as pd
from pylab import mpl
from scipy import optimize
import numpy as np
import matplotlib.pyplot as plt
def f_1(x, A, B):
    return A*x + B
def draw_cure(file):
    data1=pd.read_excel(file)
    data1=pd.DataFrame(data1)
    hz=list(data1['患者密度(人/10万人)'])
    rk=list(data1['人口密度(人/平方千米)'])
    hz_gy=[]
    rk_gy=[]
    for i in hz:
        hz_gy.append((i-min(hz))/(max(hz)-min(hz)))
    for i in rk:
        rk_gy.append((i-min(rk))/(max(rk)-min(rk)))
    n=['玄武区','秦淮区','建邺区','鼓楼区','浦口区','栖霞区','雨花台区','江宁区','六合区','溧水区','高淳区',
       '锡山区','惠山区','滨湖区','梁溪区','新吴区','江阴市','宜兴市',
       '鼓楼区','云龙区','贾汪区','泉山区','铜山区','丰县','沛县','睢宁县','新沂市','邳州市',
       '天宁区','钟楼区','新北区','武进区','金坛区','溧阳市',
       '虎丘区','吴中区','相城区','姑苏区','吴江区','常熟市','张家港市','昆山市','太仓市',
       '崇川区','港闸区','通州区','如东县','启东市','如皋市','海门市','海安市',
       '连云区','海州区','赣榆区','东海县','灌云县','灌南县',
       '淮安区','淮阴区','清江浦区','洪泽区','涟水县','盱眙县','金湖县',
       '亭湖区','盐都区','大丰区','响水县','滨海县','阜宁县','射阳县','建湖县','东台市',
       '广陵区','邗江区','江都区','宝应县','仪征市','高邮市',
       '京口区','润州区','丹徒区','丹阳市','扬中市','句容市',
       '海陵区','高港区','姜堰区','兴化市','靖江市','泰兴市',
       '宿城区','宿豫区','沭阳县','泗阳县','泗洪县']
    mpl.rcParams['font.sans-serif'] = ['FangSong']
    plt.figure(figsize=(16,8),dpi=98)
    p1 = plt.subplot(121)
    p2 = plt.subplot(122)
    p1.scatter(rk_gy,hz_gy,c='r')
    p2.scatter(rk_gy,hz_gy,c='r')
    p1.axis([0.0,1.01,0.0,1.01])
    p1.set_ylabel("患者密度(人/10万人)",fontsize=13)
    p1.set_xlabel("人口密度(人/平方千米)",fontsize=13)
    p1.set_title("人口密度—患者密度相关性",fontsize=13)
    for i,txt in enumerate(n):
        p1.annotate(txt,(rk_gy[i],hz_gy[i]))
    A1, B1 = optimize.curve_fit(f_1, rk_gy, hz_gy)[0]
    x1 = np.arange(0, 1, 0.01)
    y1 = A1*x1 + B1
    p1.plot(x1, y1, "blue",label='一次拟合直线')
    x2 = np.arange(0, 1, 0.01)
    y2 = x2
    p1.plot(x2, y2,'g--',label='y=x')
    p1.legend(loc='upper left',fontsize=13)
    # # plot the box
    tx0 = 0;tx1 = 0.1;ty0 = 0;ty1 = 0.2
    sx = [tx0,tx1,tx1,tx0,tx0]
    sy = [ty0,ty0,ty1,ty1,ty0]
    p1.plot(sx,sy,"purple")
    p2.axis([0,0.1,0,0.2])
    p2.set_ylabel("患者密度(人/10万人)",fontsize=13)
    p2.set_xlabel("人口密度(人/平方千米)",fontsize=13)
    p2.set_title("人口密度—患者密度相关性",fontsize=13)
    for i,txt in enumerate(n):
        p2.annotate(txt,(rk_gy[i],hz_gy[i]))
    p2.plot(x1, y1, "blue",label='一次拟合直线')
    p2.plot(x2, y2,'g--',label='y=x')
    p2.legend(loc='upper left',fontsize=13)
    plt.show()
if __name__ == '__main__':
    draw_cure("F:\医学大数据课题\论文终稿修改\scientific report\返修\市区县相关分析 _2231.xls")

实现效果:

python数据分析之单因素分析线性拟合及地理编码

二、实现地理编码

  • 输入:中文地址信息,例如安徽为县天城镇都督村冲里18号
  • 输出:经纬度坐标,例如107.34799754989581 30.50483335424108
  • 功能:根据中文地址信息获取经纬度坐标

实现代码:

import json
from urllib.request import urlopen,quote
import xlrd
def readXLS(XLS_FILE,sheet0):
    rb= xlrd.open_workbook(XLS_FILE)
    rs= rb.sheets()[sheet0]
    return rs
def getlnglat(adress):
    url = 'http://api.map.baidu.com/geocoding/v3/?address='
    output = 'json'
    ak = 'fdi11GHN3GYVQdzVnUPuLSScYBVxYDFK'
    add = quote(adress)#使用quote进行编码 为了防止中文乱码
    # add=adress
    url2 = url + add + '&output=' + output + '&ak=' + ak
    req = urlopen(url2)
    res = req.read().decode()
    temp = json.loads(res)
    return temp
def getlatlon(sd_rs):
    nrows_sd_rs=sd_rs.nrows
    for i in range(4,nrows_sd_rs):
    # for i in range(4, 7):
        row=sd_rs.row_values(i)
        print(i,i/nrows_sd_rs)
        b = (row[11]+row[12]+row[9]).replace('#','号') # 第三列的地址
        print(b)
        try:
            lng = getlnglat(b)['result']['location']['lng']  # 获取经度并写入
            lat = getlnglat(b)['result']['location']['lat']  #获取纬度并写入
        except KeyError as e:
            lng=''
            lat=''
            f_err=open('f_err.txt','a')
            f_err.write(str(i)+'\t')
            f_err.close()
            print(e)
        print(lng,lat)
        f_latlon = open('f_latlon.txt', 'a')
        f_latlon.write(row[0]+'\t'+b+'\t'+str(lng)+'\t'+str(lat)+'\n')
        f_latlon.close()
if __name__=='__main__':
    # sle_xls_file = 'F:\医学大数据课题\江苏省SLE数据库(两次随访合并).xlsx'
    sle_xls_file = "F:\医学大数据课题\数据副本\江苏省SLE数据库(两次随访合并) - 副本.xlsx"
    sle_data_rs = readXLS(sle_xls_file, 1)
    getlatlon(sle_data_rs)

结果展示:

python数据分析之单因素分析线性拟合及地理编码

到此这篇关于python数据分析之单因素分析线性拟合及地理编码的文章就介绍到这了,更多相关python数据分析内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python清除指定目录内所有文件中script的方法
Jun 30 Python
Python while 循环使用的简单实例
Jun 08 Python
python使用matplotlib绘制折线图教程
Feb 08 Python
浅谈机器学习需要的了解的十大算法
Dec 15 Python
python简单实现操作Mysql数据库
Jan 29 Python
python实现百度语音识别api
Apr 10 Python
python判断文件是否存在,不存在就创建一个的实例
Feb 18 Python
Python基础类继承重写实现原理解析
Apr 03 Python
OpenCV Python实现图像指定区域裁剪
Mar 12 Python
python判断元素是否存在的实例方法
Sep 24 Python
用python获取txt文件中关键字的数量
Dec 24 Python
python 多态 协议 鸭子类型详解
Nov 27 Python
python可视化分析绘制带趋势线的散点图和边缘直方图
基于Python编写一个监控CPU的应用系统
如何基于python实现单目三维重建详解
python如何读取和存储dict()与.json格式文件
Jun 25 #Python
python运行脚本文件的三种方法实例
Jun 25 #Python
如何利用python创作字符画
利用Python实时获取steam特惠游戏数据
You might like
PHP对象Object的概念 介绍
2012/06/14 PHP
laravel model模型处理之修改查询或修改字段时的类型格式案例
2019/10/17 PHP
php设计模式之代理模式分析【星际争霸游戏案例】
2020/03/23 PHP
读jQuery之十三 添加事件和删除事件的核心方法
2011/08/23 Javascript
Extjs4 GridPanel的主要配置参数详细介绍
2013/04/18 Javascript
javascript实现数字+字母验证码的简单实例
2014/02/10 Javascript
jQuery中:selected选择器用法实例
2015/01/04 Javascript
js实现文字在按钮上滚动的方法
2015/08/20 Javascript
基于AngularJS实现页面滚动到底自动加载数据的功能
2015/10/16 Javascript
初识angular框架后的所思所想
2016/02/19 Javascript
jQueryUI中的datepicker使用方法详解
2016/05/25 Javascript
将 vue 生成的 js 上传到七牛的实例
2017/07/28 Javascript
浅谈Angular路由守卫
2017/08/26 Javascript
vue cli 3.0通用打包配置代码,不分一二级目录
2020/09/02 Javascript
vue+iview使用树形控件的具体使用
2020/11/02 Javascript
[45:15]Optic vs VP 2018国际邀请赛淘汰赛BO3 第一场 8.24
2018/08/25 DOTA
多线程爬虫批量下载pcgame图片url 保存为xml的实现代码
2013/01/17 Python
Python中time模块与datetime模块在使用中的不同之处
2015/11/24 Python
Windows下Python使用Pandas模块操作Excel文件的教程
2016/05/31 Python
Python 常用 PEP8 编码规范详解
2017/01/22 Python
利用python将pdf输出为txt的实例讲解
2018/04/23 Python
Python Scapy随心所欲研究TCP协议栈
2018/11/20 Python
Mac下Anaconda的安装和使用教程
2018/11/29 Python
django实现支付宝支付实例讲解
2019/10/17 Python
python sorted方法和列表使用解析
2019/11/18 Python
python 异步async库的使用说明
2020/05/04 Python
Crocs卡骆驰洞洞鞋日本官方网站:Crocs日本
2016/08/25 全球购物
Book Depository欧盟:一家领先的国际图书零售商
2019/05/21 全球购物
酒店总经理职务说明书
2014/02/26 职场文书
农民工工资支付承诺函
2014/03/31 职场文书
人事经理岗位职责
2014/04/28 职场文书
超市周年庆活动方案
2014/08/16 职场文书
工作失职检讨书
2015/01/26 职场文书
2019年大学生学年自我鉴定!
2019/03/25 职场文书
实体类或对象序列化时,忽略为空属性的操作
2021/06/30 Java/Android
浅析Python中的随机采样和概率分布
2021/12/06 Python