Posted in Python onJune 25, 2022
一、绘制带趋势线的散点图
实现功能:
在散点图上添加趋势线(线性拟合线)反映两个变量是正相关、负相关或者无相关关系。
实现代码:
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings(action='once')
plt.style.use('seaborn-whitegrid')
sns.set_style("whitegrid")
print(mpl.__version__)
print(sns.__version__)
def draw_scatter(file):
# Import Data
df = pd.read_csv(file)
df_select = df.loc[df.cyl.isin([4, 8]), :]
# Plot
gridobj = sns.lmplot(
x="displ",
y="hwy",
hue="cyl",
data=df_select,
height=7,
aspect=1.6,
palette='Set1',
scatter_kws=dict(s=60, linewidths=.7, edgecolors='black'))
# Decorations
sns.set(style="whitegrid", font_scale=1.5)
gridobj.set(xlim=(0.5, 7.5), ylim=(10, 50))
gridobj.fig.set_size_inches(10, 6)
plt.tight_layout()
plt.title("Scatterplot with line of best fit grouped by number of cylinders")
plt.show()
draw_scatter("F:\数据杂坛\datasets\mpg_ggplot2.csv")
实现效果:
在散点图上添加趋势线(线性拟合线)反映两个变量是正相关、负相关或者无相关关系。红蓝两组数据分别绘制出最佳的线性拟合线。
二、绘制边缘直方图
实现功能:
python绘制边缘直方图,用于展示X和Y之间的关系、及X和Y的单变量分布情况,常用于数据探索分析。
实现代码:
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings(action='once')
plt.style.use('seaborn-whitegrid')
sns.set_style("whitegrid")
print(mpl.__version__)
print(sns.__version__)
def draw_Marginal_Histogram(file):
# Import Data
df = pd.read_csv(file)
# Create Fig and gridspec
fig = plt.figure(figsize=(10, 6), dpi=100)
grid = plt.GridSpec(4, 4, hspace=0.5, wspace=0.2)
# Define the axes
ax_main = fig.add_subplot(grid[:-1, :-1])
ax_right = fig.add_subplot(grid[:-1, -1], xticklabels=[], yticklabels=[])
ax_bottom = fig.add_subplot(grid[-1, 0:-1], xticklabels=[], yticklabels=[])
# Scatterplot on main ax
ax_main.scatter('displ',
'hwy',
s=df.cty * 4,
c=df.manufacturer.astype('category').cat.codes,
alpha=.9,
data=df,
cmap="Set1",
edgecolors='gray',
linewidths=.5)
# histogram on the right
ax_bottom.hist(df.displ,
40,
histtype='stepfilled',
orientation='vertical',
color='#098154')
ax_bottom.invert_yaxis()
# histogram in the bottom
ax_right.hist(df.hwy,
40,
histtype='stepfilled',
orientation='horizontal',
color='#098154')
# Decorations
ax_main.set(title='Scatterplot with Histograms \n displ vs hwy',
xlabel='displ',
ylabel='hwy')
ax_main.title.set_fontsize(10)
for item in ([ax_main.xaxis.label, ax_main.yaxis.label] +
ax_main.get_xticklabels() + ax_main.get_yticklabels()):
item.set_fontsize(10)
xlabels = ax_main.get_xticks().tolist()
ax_main.set_xticklabels(xlabels)
plt.show()
draw_Marginal_Histogram("F:\数据杂坛\datasets\mpg_ggplot2.csv")
实现效果:
到此这篇关于python可视化分析绘制带趋势线的散点图和边缘直方图的文章就介绍到这了,更多相关python绘制内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!
python可视化分析绘制带趋势线的散点图和边缘直方图
- Author -
不再依然07- Original Sources -
声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@