Python图像识别+KNN求解数独的实现


Posted in Python onNovember 13, 2020

Python-opencv+KNN求解数独

最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s。

整体思路大概就是识别出图中数字生成list,然后求解。

输入输出demo

数独采用的是微软自带的Microsoft sudoku软件随便截取的图像,如下图所示:

Python图像识别+KNN求解数独的实现

经过程序求解后,得到的结果如下图所示:

Python图像识别+KNN求解数独的实现

程序具体流程

程序整体流程如下图所示:

Python图像识别+KNN求解数独的实现

读入图像后,根据求解轮廓信息找到数字所在位置,以及不包含数字的空白位置,提取数字信息通过KNN识别,识别出数字;无数字信息的在list中置0;生成未求解数独list,之后求解数独,将信息在原图中显示出来。

# -*-coding:utf-8-*-
import os
import cv2 as cv
import numpy as np
import time

####################################################
#寻找数字生成list
def find_dig_(img, train_set):
  if img is None:
    print("无效的图片!")
    os._exit(0)
    return
  _, thre = cv.threshold(img, 230, 250, cv.THRESH_BINARY_INV)
  _, contours, hierarchy = cv.findContours(thre, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
  sudoku_list = []
  boxes = []
  for i in range(len(hierarchy[0])):
    if hierarchy[0][i][3] == 0: # 表示父轮廓为 0
      boxes.append(hierarchy[0][i])
  # 提取数字
  nm = []
  for j in range(len(boxes)):  # 此处len(boxes)=81
    if boxes[j][2] != -1:
      x, y, w, h = cv.boundingRect(contours[boxes[j][2]])
      nm.append([x, y, w, h])
      # 在原图中框选各个数字
      cropped = img[y:y + h, x:x + w]
      im = img_pre(cropped)			#预处理
      AF = incise(im)				#切割数字图像
      result = identification(train_set, AF, 7)		#knn识别
      sudoku_list.insert(0, int(result))				#生成list
    else:
      sudoku_list.insert(0, 0)
      
  if len(sudoku_list) == 81:
    sudoku_list= np.array(sudoku_list)
    sudoku_list= sudoku_list.reshape((9, 9))
    print("old_sudoku -> \n", sudoku_list)
    return sudoku_list, contours, hierarchy
  else:
    print("无效的图片!")
    os._exit(0)

######################################################
#KNN算法识别数字
def img_pre(cropped):
  # 预处理数字图像
  im = np.array(cropped) # 转化为二维数组
  for i in range(im.shape[0]): # 转化为二值矩阵
    for j in range(im.shape[1]):
      # print(im[i, j])
      if im[i, j] != 255:
        im[i, j] = 1
      else:
        im[i, j] = 0
  return im


# 提取图片特征
def feature(A):
  midx = int(A.shape[1] / 2) + 1
  midy = int(A.shape[0] / 2) + 1
  A1 = A[0:midy, 0:midx].mean()
  A2 = A[midy:A.shape[0], 0:midx].mean()
  A3 = A[0:midy, midx:A.shape[1]].mean()
  A4 = A[midy:A.shape[0], midx:A.shape[1]].mean()
  A5 = A.mean()
  AF = [A1, A2, A3, A4, A5]
  return AF


# 切割图片并返回每个子图片特征
def incise(im):
  # 竖直切割并返回切割的坐标
  a = [];
  b = []
  if any(im[:, 0] == 1):
    a.append(0)
  for i in range(im.shape[1] - 1):
    if all(im[:, i] == 0) and any(im[:, i + 1] == 1):
      a.append(i + 1)
    elif any(im[:, i] == 1) and all(im[:, i + 1] == 0):
      b.append(i + 1)
  if any(im[:, im.shape[1] - 1] == 1):
    b.append(im.shape[1])
  # 水平切割并返回分割图片特征
  names = locals();
  AF = []
  for i in range(len(a)):
    names['na%s' % i] = im[:, range(a[i], b[i])]
    if any(names['na%s' % i][0, :] == 1):
      c = 0
    else:
      for j in range(names['na%s' % i].shape[0]):
        if j < names['na%s' % i].shape[0] - 1:
          if all(names['na%s' % i][j, :] == 0) and any(names['na%s' % i][j + 1, :] == 1):
            c = j
            break
        else:
          c = j
    if any(names['na%s' % i][names['na%s' % i].shape[0] - 1, :] == 1):
      d = names['na%s' % i].shape[0] - 1
    else:
      for j in range(names['na%s' % i].shape[0]):
        if j < names['na%s' % i].shape[0] - 1:
          if any(names['na%s' % i][j, :] == 1) and all(names['na%s' % i][j + 1, :] == 0):
            d = j + 1
            break
        else:
          d = j
    names['na%s' % i] = names['na%s' % i][range(c, d), :]
    AF.append(feature(names['na%s' % i])) # 提取特征
    for j in names['na%s' % i]:
      pass
  return AF


# 训练已知图片的特征
def training():
  train_set = {}
  for i in range(9):
    value = []
    for j in range(15):
      ima = cv.imread('E:/test_image/knn_test/{}/{}.png'.format(i + 1, j + 1), 0)
      im = img_pre(ima)
      AF = incise(im)
      value.append(AF[0])
    train_set[i + 1] = value

  return train_set


# 计算两向量的距离
def distance(v1, v2):
  vector1 = np.array(v1)
  vector2 = np.array(v2)
  Vector = (vector1 - vector2) ** 2
  distance = Vector.sum() ** 0.5
  return distance


# 用最近邻算法识别单个数字
def knn(train_set, V, k):
  key_sort = [11] * k
  value_sort = [11] * k
  for key in range(1, 10):
    for value in train_set[key]:
      d = distance(V, value)
      for i in range(k):
        if d < value_sort[i]:
          for j in range(k - 2, i - 1, -1):
            key_sort[j + 1] = key_sort[j]
            value_sort[j + 1] = value_sort[j]
          key_sort[i] = key
          value_sort[i] = d
          break
  max_key_count = -1
  key_set = set(key_sort)
  for key in key_set:
    if max_key_count < key_sort.count(key):
      max_key_count = key_sort.count(key)
      max_key = key
  return max_key


# 生成数字
def identification(train_set, AF, k):
  result = ''
  for i in AF:
    key = knn(train_set, i, k)
    result = result + str(key)
  return result



######################################################
######################################################
#求解数独
def get_next(m, x, y):
  # 获得下一个空白格在数独中的坐标。
  :param m 数独矩阵
  :param x 空白格行数
  :param y 空白格列数
  """
  for next_y in range(y + 1, 9): # 下一个空白格和当前格在一行的情况
    if m[x][next_y] == 0:
      return x, next_y
  for next_x in range(x + 1, 9): # 下一个空白格和当前格不在一行的情况
    for next_y in range(0, 9):
      if m[next_x][next_y] == 0:
        return next_x, next_y
  return -1, -1 # 若不存在下一个空白格,则返回 -1,-1


def value(m, x, y):
  # 返回符合"每个横排和竖排以及九宫格内无相同数字"这个条件的有效值。
 
  i, j = x // 3, y // 3
  grid = [m[i * 3 + r][j * 3 + c] for r in range(3) for c in range(3)]
  v = set([x for x in range(1, 10)]) - set(grid) - set(m[x]) - \
    set(list(zip(*m))[y])
  return list(v)


def start_pos(m):
  # 返回第一个空白格的位置坐标
  for x in range(9):
    for y in range(9):
      if m[x][y] == 0:
        return x, y
  return False, False # 若数独已完成,则返回 False, False


def try_sudoku(m, x, y):
  # 试着填写数独
  for v in value(m, x, y):
    m[x][y] = v
    next_x, next_y = get_next(m, x, y)
    if next_y == -1: # 如果无下一个空白格
      return True
    else:
      end = try_sudoku(m, next_x, next_y) # 递归
      if end:
        return True
      m[x][y] = 0 # 在递归的过程中,如果数独没有解开,
      # 则回溯到上一个空白格


def sudoku_so(m):
  x, y = start_pos(m)
  try_sudoku(m, x, y)
  print("new_sudoku -> \n", m)
  return m

###################################################
# 将结果绘制到原图
def draw_answer(img, contours, hierarchy, new_sudoku_list ):
  new_sudoku_list = new_sudoku_list .flatten().tolist()
  for i in range(len(contours)):
    cnt = contours[i]
    if hierarchy[0, i, -1] == 0:
      num = new_soduku_list.pop(-1)
      if hierarchy[0, i, 2] == -1:
        x, y, w, h = cv.boundingRect(cnt)
        cv.putText(img, "%d" % num, (x + 19, y + 56), cv.FONT_HERSHEY_SIMPLEX, 1.8, (0, 0, 255), 2) # 填写数字
  cv.imwrite("E:/answer.png", img)


if __name__ == '__main__':
  t1 = time.time()
  train_set = training()
  img = cv.imread('E:/test_image/python_test_img/Sudoku.png')
  img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
  sudoku_list, contours, hierarchy = find_dig_(img_gray, train_set)
  new_sudoku_list = sudoku_so(sudoku_list)
  draw_answer(img, contours, hierarchy, new_sudoku_list )
  print("time :",time.time()-t1)

PS:

使用KNN算法需要创建训练集,数独中共涉及9个数字,“1,2,3,4,5,6,7,8,9”各15幅图放入文件夹中,如下图所示。

Python图像识别+KNN求解数独的实现

到此这篇关于Python图像识别+KNN求解数独的实现的文章就介绍到这了,更多相关Python KNN求解数独内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
用实例说明python的*args和**kwargs用法
Nov 01 Python
python获取代理IP的实例分享
May 07 Python
如何实现删除numpy.array中的行或列
May 08 Python
Python的argparse库使用详解
Oct 09 Python
解决Python 命令行执行脚本时,提示导入的包找不到的问题
Jan 19 Python
浅谈Django+Gunicorn+Nginx部署之路
Sep 11 Python
Python进阶之使用selenium爬取淘宝商品信息功能示例
Sep 16 Python
Python RabbitMQ实现简单的进程间通信示例
Jul 02 Python
mac安装python3后使用pip和pip3的区别说明
Sep 01 Python
python文件路径操作方法总结
Dec 21 Python
基于PyInstaller各参数的含义说明
Mar 04 Python
Python基础详解之邮件处理
Apr 28 Python
Django正则URL匹配实现流程解析
Nov 13 #Python
Django框架请求生命周期实现原理
Nov 13 #Python
python在地图上画比例的实例详解
Nov 13 #Python
python语言实现贪吃蛇游戏
Nov 13 #Python
Python使用struct处理二进制(pack和unpack用法)
Nov 12 #Python
python切割图片的示例
Nov 12 #Python
教你使用Sublime text3搭建Python开发环境及常用插件安装另分享Sublime text3最新激活注册码
Nov 12 #Python
You might like
Php中用PDO查询Mysql来避免SQL注入风险的方法
2013/04/25 PHP
解析Linux下Varnish缓存的配置优化
2013/06/20 PHP
CI框架中$this-&gt;load-&gt;library()用法分析
2016/05/18 PHP
用js 让图片在 div或dl里 居中,底部对齐
2008/01/21 Javascript
boxy基于jquery的弹出层对话框插件扩展应用 弹出层选择器
2010/11/21 Javascript
jQuery源码分析-02正则表达式 RegExp 常用正则表达式
2011/11/14 Javascript
JS实现淘宝幻灯片效果的实现方法
2013/03/22 Javascript
IE下Ajax缓存问题的快速解决方法(get方式)
2014/01/09 Javascript
ExtJS如何设置与获取radio控件的选取状态
2014/01/22 Javascript
javascript感应鼠标图片透明度显示的方法
2015/02/24 Javascript
JS组件Bootstrap导航条使用方法详解
2016/04/29 Javascript
JavaScript结合Bootstrap仿微信后台多图文界面管理
2016/07/22 Javascript
Vue项目安装插件并保存
2019/01/28 Javascript
vue的列表交错过渡实现代码示例
2019/05/05 Javascript
使用React代码动态生成栅格布局的方法
2020/05/24 Javascript
在vue中实现echarts随窗体变化
2020/07/27 Javascript
python分割文件的常用方法
2014/11/01 Python
Python实现的多项式拟合功能示例【基于matplotlib】
2018/05/15 Python
python异步实现定时任务和周期任务的方法
2019/06/29 Python
Django中信号signals的简单使用方法
2019/07/04 Python
python3实现elasticsearch批量更新数据
2019/12/03 Python
tensorflow模型继续训练 fineturn实例
2020/01/21 Python
Python threading.local代码实例及原理解析
2020/03/16 Python
django 实现简单的插入视频
2020/04/07 Python
Python多线程实现支付模拟请求过程解析
2020/04/21 Python
Python使用grequests并发发送请求的示例
2020/11/05 Python
凯特·丝蓓英国官网:Kate Spade英国
2016/11/07 全球购物
Carter’s OshKosh加拿大:购买婴幼儿服装和童装
2018/11/27 全球购物
简历中自我评价怎么写
2014/02/12 职场文书
2014年教师党员公开承诺书
2014/05/28 职场文书
竞赛口号大全
2014/06/16 职场文书
幼儿园小班见习报告
2014/10/31 职场文书
您对思维方式了解多少?
2019/12/09 职场文书
利用python调用摄像头的实例分析
2021/06/07 Python
分享一些Java的常用工具
2021/06/11 Java/Android
Python编程super应用场景及示例解析
2021/10/05 Python