Python图像识别+KNN求解数独的实现


Posted in Python onNovember 13, 2020

Python-opencv+KNN求解数独

最近一直在玩数独,突发奇想实现图像识别求解数独,输入到输出平均需要0.5s。

整体思路大概就是识别出图中数字生成list,然后求解。

输入输出demo

数独采用的是微软自带的Microsoft sudoku软件随便截取的图像,如下图所示:

Python图像识别+KNN求解数独的实现

经过程序求解后,得到的结果如下图所示:

Python图像识别+KNN求解数独的实现

程序具体流程

程序整体流程如下图所示:

Python图像识别+KNN求解数独的实现

读入图像后,根据求解轮廓信息找到数字所在位置,以及不包含数字的空白位置,提取数字信息通过KNN识别,识别出数字;无数字信息的在list中置0;生成未求解数独list,之后求解数独,将信息在原图中显示出来。

# -*-coding:utf-8-*-
import os
import cv2 as cv
import numpy as np
import time

####################################################
#寻找数字生成list
def find_dig_(img, train_set):
  if img is None:
    print("无效的图片!")
    os._exit(0)
    return
  _, thre = cv.threshold(img, 230, 250, cv.THRESH_BINARY_INV)
  _, contours, hierarchy = cv.findContours(thre, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE)
  sudoku_list = []
  boxes = []
  for i in range(len(hierarchy[0])):
    if hierarchy[0][i][3] == 0: # 表示父轮廓为 0
      boxes.append(hierarchy[0][i])
  # 提取数字
  nm = []
  for j in range(len(boxes)):  # 此处len(boxes)=81
    if boxes[j][2] != -1:
      x, y, w, h = cv.boundingRect(contours[boxes[j][2]])
      nm.append([x, y, w, h])
      # 在原图中框选各个数字
      cropped = img[y:y + h, x:x + w]
      im = img_pre(cropped)			#预处理
      AF = incise(im)				#切割数字图像
      result = identification(train_set, AF, 7)		#knn识别
      sudoku_list.insert(0, int(result))				#生成list
    else:
      sudoku_list.insert(0, 0)
      
  if len(sudoku_list) == 81:
    sudoku_list= np.array(sudoku_list)
    sudoku_list= sudoku_list.reshape((9, 9))
    print("old_sudoku -> \n", sudoku_list)
    return sudoku_list, contours, hierarchy
  else:
    print("无效的图片!")
    os._exit(0)

######################################################
#KNN算法识别数字
def img_pre(cropped):
  # 预处理数字图像
  im = np.array(cropped) # 转化为二维数组
  for i in range(im.shape[0]): # 转化为二值矩阵
    for j in range(im.shape[1]):
      # print(im[i, j])
      if im[i, j] != 255:
        im[i, j] = 1
      else:
        im[i, j] = 0
  return im


# 提取图片特征
def feature(A):
  midx = int(A.shape[1] / 2) + 1
  midy = int(A.shape[0] / 2) + 1
  A1 = A[0:midy, 0:midx].mean()
  A2 = A[midy:A.shape[0], 0:midx].mean()
  A3 = A[0:midy, midx:A.shape[1]].mean()
  A4 = A[midy:A.shape[0], midx:A.shape[1]].mean()
  A5 = A.mean()
  AF = [A1, A2, A3, A4, A5]
  return AF


# 切割图片并返回每个子图片特征
def incise(im):
  # 竖直切割并返回切割的坐标
  a = [];
  b = []
  if any(im[:, 0] == 1):
    a.append(0)
  for i in range(im.shape[1] - 1):
    if all(im[:, i] == 0) and any(im[:, i + 1] == 1):
      a.append(i + 1)
    elif any(im[:, i] == 1) and all(im[:, i + 1] == 0):
      b.append(i + 1)
  if any(im[:, im.shape[1] - 1] == 1):
    b.append(im.shape[1])
  # 水平切割并返回分割图片特征
  names = locals();
  AF = []
  for i in range(len(a)):
    names['na%s' % i] = im[:, range(a[i], b[i])]
    if any(names['na%s' % i][0, :] == 1):
      c = 0
    else:
      for j in range(names['na%s' % i].shape[0]):
        if j < names['na%s' % i].shape[0] - 1:
          if all(names['na%s' % i][j, :] == 0) and any(names['na%s' % i][j + 1, :] == 1):
            c = j
            break
        else:
          c = j
    if any(names['na%s' % i][names['na%s' % i].shape[0] - 1, :] == 1):
      d = names['na%s' % i].shape[0] - 1
    else:
      for j in range(names['na%s' % i].shape[0]):
        if j < names['na%s' % i].shape[0] - 1:
          if any(names['na%s' % i][j, :] == 1) and all(names['na%s' % i][j + 1, :] == 0):
            d = j + 1
            break
        else:
          d = j
    names['na%s' % i] = names['na%s' % i][range(c, d), :]
    AF.append(feature(names['na%s' % i])) # 提取特征
    for j in names['na%s' % i]:
      pass
  return AF


# 训练已知图片的特征
def training():
  train_set = {}
  for i in range(9):
    value = []
    for j in range(15):
      ima = cv.imread('E:/test_image/knn_test/{}/{}.png'.format(i + 1, j + 1), 0)
      im = img_pre(ima)
      AF = incise(im)
      value.append(AF[0])
    train_set[i + 1] = value

  return train_set


# 计算两向量的距离
def distance(v1, v2):
  vector1 = np.array(v1)
  vector2 = np.array(v2)
  Vector = (vector1 - vector2) ** 2
  distance = Vector.sum() ** 0.5
  return distance


# 用最近邻算法识别单个数字
def knn(train_set, V, k):
  key_sort = [11] * k
  value_sort = [11] * k
  for key in range(1, 10):
    for value in train_set[key]:
      d = distance(V, value)
      for i in range(k):
        if d < value_sort[i]:
          for j in range(k - 2, i - 1, -1):
            key_sort[j + 1] = key_sort[j]
            value_sort[j + 1] = value_sort[j]
          key_sort[i] = key
          value_sort[i] = d
          break
  max_key_count = -1
  key_set = set(key_sort)
  for key in key_set:
    if max_key_count < key_sort.count(key):
      max_key_count = key_sort.count(key)
      max_key = key
  return max_key


# 生成数字
def identification(train_set, AF, k):
  result = ''
  for i in AF:
    key = knn(train_set, i, k)
    result = result + str(key)
  return result



######################################################
######################################################
#求解数独
def get_next(m, x, y):
  # 获得下一个空白格在数独中的坐标。
  :param m 数独矩阵
  :param x 空白格行数
  :param y 空白格列数
  """
  for next_y in range(y + 1, 9): # 下一个空白格和当前格在一行的情况
    if m[x][next_y] == 0:
      return x, next_y
  for next_x in range(x + 1, 9): # 下一个空白格和当前格不在一行的情况
    for next_y in range(0, 9):
      if m[next_x][next_y] == 0:
        return next_x, next_y
  return -1, -1 # 若不存在下一个空白格,则返回 -1,-1


def value(m, x, y):
  # 返回符合"每个横排和竖排以及九宫格内无相同数字"这个条件的有效值。
 
  i, j = x // 3, y // 3
  grid = [m[i * 3 + r][j * 3 + c] for r in range(3) for c in range(3)]
  v = set([x for x in range(1, 10)]) - set(grid) - set(m[x]) - \
    set(list(zip(*m))[y])
  return list(v)


def start_pos(m):
  # 返回第一个空白格的位置坐标
  for x in range(9):
    for y in range(9):
      if m[x][y] == 0:
        return x, y
  return False, False # 若数独已完成,则返回 False, False


def try_sudoku(m, x, y):
  # 试着填写数独
  for v in value(m, x, y):
    m[x][y] = v
    next_x, next_y = get_next(m, x, y)
    if next_y == -1: # 如果无下一个空白格
      return True
    else:
      end = try_sudoku(m, next_x, next_y) # 递归
      if end:
        return True
      m[x][y] = 0 # 在递归的过程中,如果数独没有解开,
      # 则回溯到上一个空白格


def sudoku_so(m):
  x, y = start_pos(m)
  try_sudoku(m, x, y)
  print("new_sudoku -> \n", m)
  return m

###################################################
# 将结果绘制到原图
def draw_answer(img, contours, hierarchy, new_sudoku_list ):
  new_sudoku_list = new_sudoku_list .flatten().tolist()
  for i in range(len(contours)):
    cnt = contours[i]
    if hierarchy[0, i, -1] == 0:
      num = new_soduku_list.pop(-1)
      if hierarchy[0, i, 2] == -1:
        x, y, w, h = cv.boundingRect(cnt)
        cv.putText(img, "%d" % num, (x + 19, y + 56), cv.FONT_HERSHEY_SIMPLEX, 1.8, (0, 0, 255), 2) # 填写数字
  cv.imwrite("E:/answer.png", img)


if __name__ == '__main__':
  t1 = time.time()
  train_set = training()
  img = cv.imread('E:/test_image/python_test_img/Sudoku.png')
  img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
  sudoku_list, contours, hierarchy = find_dig_(img_gray, train_set)
  new_sudoku_list = sudoku_so(sudoku_list)
  draw_answer(img, contours, hierarchy, new_sudoku_list )
  print("time :",time.time()-t1)

PS:

使用KNN算法需要创建训练集,数独中共涉及9个数字,“1,2,3,4,5,6,7,8,9”各15幅图放入文件夹中,如下图所示。

Python图像识别+KNN求解数独的实现

到此这篇关于Python图像识别+KNN求解数独的实现的文章就介绍到这了,更多相关Python KNN求解数独内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python内置的HTTP协议服务器SimpleHTTPServer使用指南
Mar 30 Python
Python中列表元素转为数字的方法分析
Jun 14 Python
Python增量循环删除MySQL表数据的方法
Sep 23 Python
Python如何通过subprocess调用adb命令详解
Aug 27 Python
python编程培训 python培训靠谱吗
Jan 17 Python
python实现关键词提取的示例讲解
Apr 28 Python
python 3.7.0 下pillow安装方法
Aug 27 Python
Python实现京东秒杀功能代码
May 16 Python
python pyinstaller打包exe报错的解决方法
Nov 02 Python
python生成特定分布数的实例
Dec 05 Python
用python 绘制茎叶图和复合饼图
Feb 26 Python
python3使用diagrams绘制架构图的步骤
Apr 08 Python
Django正则URL匹配实现流程解析
Nov 13 #Python
Django框架请求生命周期实现原理
Nov 13 #Python
python在地图上画比例的实例详解
Nov 13 #Python
python语言实现贪吃蛇游戏
Nov 13 #Python
Python使用struct处理二进制(pack和unpack用法)
Nov 12 #Python
python切割图片的示例
Nov 12 #Python
教你使用Sublime text3搭建Python开发环境及常用插件安装另分享Sublime text3最新激活注册码
Nov 12 #Python
You might like
历史证明,懒惰才是推动科学发展技术进步的动力
2021/03/02 无线电
一个颜色轮换的简单例子
2006/10/09 PHP
实用函数8
2007/11/08 PHP
php中iconv函数使用方法
2008/05/24 PHP
WindowsXP中快速配置Apache+PHP5+Mysql
2008/06/05 PHP
thinkPHP框架对接支付宝即时到账接口回调操作示例
2016/11/14 PHP
Yii框架弹出框功能示例
2017/01/07 PHP
php实现微信公众平台发红包功能
2018/06/14 PHP
PHP-FPM 设置多pool及配置文件重写操作示例
2019/10/02 PHP
jquery选择器(常用选择器说明)
2010/09/28 Javascript
javascript中普通函数的使用介绍
2013/12/19 Javascript
在JS中解析HTML字符串示例代码
2014/04/16 Javascript
javascript模拟C#格式化字符串
2015/08/26 Javascript
jQuery实现鼠标滑过点击事件音效试听
2015/08/31 Javascript
AngularJS  $on、$emit和$broadcast的使用
2016/09/05 Javascript
Vue.js快速入门教程
2016/09/07 Javascript
jQuery时间日期三级联动(推荐)
2016/11/27 Javascript
js仿百度音乐全选操作
2017/01/13 Javascript
解决koa2 ctx.render is not a function报错问题
2018/08/07 Javascript
jQuery实现经典的网页3D轮播图封装功能【附源码下载】
2019/02/15 jQuery
jQuery实现为table表格动态添加或删除tr功能示例
2019/02/19 jQuery
Python实现向服务器请求压缩数据及解压缩数据的方法示例
2017/06/09 Python
微信跳一跳python辅助脚本(总结)
2018/01/11 Python
python实现寻找最长回文子序列的方法
2018/06/02 Python
教你利用Python玩转histogram直方图的五种方法
2018/07/30 Python
关于numpy.where()函数 返回值的解释
2019/12/06 Python
5 个强大的HTML5 API 函数推荐
2014/11/19 HTML / CSS
俄罗斯眼镜网: optikaworld
2016/07/31 全球购物
个人自我鉴定范文
2013/10/04 职场文书
《十六年前的回忆》教学反思
2014/02/14 职场文书
保险公司早会主持词
2014/03/22 职场文书
运动会方阵口号
2014/06/07 职场文书
2015年教师节贺卡寄语
2015/03/24 职场文书
承诺书范本大全
2015/05/04 职场文书
合作合同协议书
2016/03/21 职场文书
导游词之南京中山陵
2019/11/27 职场文书