python OpenCV学习笔记


Posted in Python onMarch 31, 2021

图像翻转

使用Python的一个包,imutils。使用下面的指令可以安装。

pip install imutils

imutils包的Github地址:https://github.com/jrosebr1/imutils

CSDN镜像:https://codechina.csdn.net/mirrors/jrosebr1/imutils

可以在上面这个地址里面学习更多的使用方式。

import cv2
import imutils

'''
imutils.rotate
第一个参数是翻转的图像,第二个参数的翻转角度
函数还提供翻转中心的设置,但默认就是中心翻转。
'''
vc = cv2.VideoCapture(0)

if vc.isOpened():
  flag, frame = vc.read()
  img = imutils.rotate(frame, 180)  # 图像翻转 
  cv2.imshow("frame", img)
else:
  flag = False

while flag:
  flag, frame = vc.read()
  if frame is None:
    break
  if flag is True:
    img = imutils.rotate(frame, 180)  # 图像翻转
    cv2.imshow("frame", img)
    if cv2.waitKey(10) == 27:
      break
vc.release()
cv2.destroyAllWindows()

这样写的话,最后的输出图像就是翻转180度的。

imutils包里还有其他好用的函数,resizing、4-point Perspective Transform、Sorting Contours等等。

图像轮廓排序

这个效果同样也是依靠imutils包完成。

from imutils import contours
import cv2
'''
contours.sort_contours
可选排序方式:"left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top"
返回值为轮廓和外接矩形

contours.label_contour
contours包内自带的画轮廓的函数,可以直接用,然后可以在图片上标出轮廓序号
也可以直接使用cv2.drawContours直接画轮廓
'''
img = cv2.imread(r"D:\opencv-workspace\Opencv\test17--VScode\shapes.png")
draw_img = img.copy()
img_rect = img.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.Canny(gray, 10, 20)  # Canny边缘检测
cnts, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 获得轮廓
(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")  # 对轮廓进行排序处理
for (i, c) in enumerate(cnts):
  sortedImage = contours.label_contour(draw_img, c, i, color=(240, 0, 159))
# img_out = cv2.drawContours(draw_img, cnts, -1, (240, 0, 159), 2)
# 根据boundingBoxes画外接矩形
for (x, y, w, h) in boundingBoxes:
  img_rect = cv2.rectangle(img_rect, (x, y), (x+w, y+h), (240, 0, 159), 2)
cv2.imshow("top-to-bottom", sortedImage)
cv2.imshow("rect", img_rect)
cv2.waitKey(0)
cv2.destroyAllWindows()

这样写的话,最后的输出图像就是翻转180度的。

imutils包里还有其他好用的函数,resizing、4-point Perspective Transform、Sorting Contours等等。

图像轮廓排序

这个效果同样也是依靠imutils包完成。

from imutils import contours
import cv2
'''
contours.sort_contours
可选排序方式:"left-to-right", "right-to-left", "top-to-bottom", "bottom-to-top"
返回值为轮廓和外接矩形

contours.label_contour
contours包内自带的画轮廓的函数,可以直接用,然后可以在图片上标出轮廓序号
也可以直接使用cv2.drawContours直接画轮廓
'''
img = cv2.imread(r"D:\opencv-workspace\Opencv\test17--VScode\shapes.png")
draw_img = img.copy()
img_rect = img.copy()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.Canny(gray, 10, 20)  # Canny边缘检测
cnts, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)  # 获得轮廓
(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")  # 对轮廓进行排序处理
for (i, c) in enumerate(cnts):
  sortedImage = contours.label_contour(draw_img, c, i, color=(240, 0, 159))
# img_out = cv2.drawContours(draw_img, cnts, -1, (240, 0, 159), 2)
# 根据boundingBoxes画外接矩形
for (x, y, w, h) in boundingBoxes:
  img_rect = cv2.rectangle(img_rect, (x, y), (x+w, y+h), (240, 0, 159), 2)
cv2.imshow("top-to-bottom", sortedImage)
cv2.imshow("rect", img_rect)
cv2.waitKey(0)
cv2.destroyAllWindows()

python OpenCV学习笔记

颜色识别

基础颜色识别

颜色识别是在HSV空间内进行的,因此在使用之前先进行颜色空间的转换。

'''使用下面这个函数进行转换,第一个参数填写要转换的图片,第二个参数填写cv2.COLOR_BGR2HSV'''
cv2.cvtColor
import cv2
import numpy as np
'''
cv2.inRange
函数很简单,参数有三个
第一个参数:hsv指的是原图
第二个参数:lower_red指的是图像中低于这个lower_red的值,图像值变为0
第三个参数:upper_red指的是图像中高于这个upper_red的值,图像值变为0
而在lower_red~upper_red之间的值变成255
'''
# 阈值
lower_green = np.array([50, 255, 255])
upper_green = np.array([70, 255, 255])
img = cv2.imread(r"D:\opencv-workspace\Opencv\test16--VScode\photo.jpg")
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
mask_green = cv2.inRange(img_hsv, lower_green, upper_green)
cv2.imshow("img_or", mask_green)
# 使用下面这个函数能显示原来的颜色。
res_green = cv2.bitwise_and(img, img, mask=mask_green)
cv2.imshow("img", res_green)
cv2.waitKey(0)
cv2.destroyAllWindows()

python OpenCV学习笔记

python OpenCV学习笔记

python OpenCV学习笔记

在进行颜色识别时,难免会出现“漏颜色”的现象,也就是会出现没识别全的现象。这个时候可以再对图像进行处理,比如说进行形态学处理,让图像更加饱满之类的。

根据BGR获取HSV

import cv2

color = np.uint8([[[193, 189, 147]]])  # 参数填写BGR的值
hsv = cv2.cvtColor(color, cv2.COLOR_BGR2HSV)
print(hsv)  # 打印出来的数值就是对应的HSV值

程序运行的结果是

[[[ 93 61 193]]]

这个就是对应的HSV的值。

根据之前写的颜色识别,就需要把对应的阈值写出。具体写法就是保持S和V不变,H加减10。这样的话就可以写出高低阈值然后应用到颜色识别里面就可以了。

阈值编辑器

import cv2
import numpy as np


def function(x):
  lowH = cv2.getTrackbarPos("lowH", "img_666")
  lowS = cv2.getTrackbarPos("lowS", "img_666")
  lowV = cv2.getTrackbarPos("lowV", "img_666")
  HighH = cv2.getTrackbarPos("HighH", "img_666")
  HighS = cv2.getTrackbarPos("HighS", "img_666")
  HighV = cv2.getTrackbarPos("HighV", "img_666")
  # print(lowH, lowS, lowV, HighH, HighS, HighV)
  lower = np.uint8([lowH, lowS, lowV])
  upper = np.uint8([HighH, HighS, HighV])
  mask = cv2.inRange(img_hsv, lower, upper)
  res = cv2.bitwise_and(img, img, mask=mask)
  cv2.imshow("img", res)


img = cv2.imread(r"D:\opencv-workspace\Opencv\test16--VScode\test.jpg")
img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
cv2.namedWindow("img_666")
cv2.createTrackbar("lowH", "img_666", 0, 179, function)
cv2.createTrackbar("lowS", "img_666", 0, 255, function)
cv2.createTrackbar("lowV", "img_666", 0, 255, function)
cv2.createTrackbar("HighH", "img_666", 0, 179, function)
cv2.createTrackbar("HighS", "img_666", 0, 255, function)
cv2.createTrackbar("HighV", "img_666", 0, 255, function)
cv2.imshow("img", img)
cv2.waitKey(0)
cv2.destroyAllWindows()

写了一个比较垃圾的阈值编辑器。。。就不多解释了。。

python OpenCV学习笔记

以上就是python OpenCV学习笔记的详细内容,更多关于python OpenCV的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python基于itchat实现微信群消息同步机器人
Feb 27 Python
Python实现PS滤镜Fish lens图像扭曲效果示例
Jan 29 Python
Python 实现删除某路径下文件及文件夹的实例讲解
Apr 24 Python
python pands实现execl转csv 并修改csv指定列的方法
Dec 12 Python
完美解决Python matplotlib绘图时汉字显示不正常的问题
Jan 29 Python
Django工程的分层结构详解
Jul 18 Python
python如何保证输入键入数字的方法
Aug 23 Python
python图片二值化提高识别率代码实例
Aug 24 Python
Linux下通过python获取本机ip方法示例
Sep 06 Python
pyqt5、qtdesigner安装和环境设置教程
Sep 25 Python
Python 格式化打印json数据方法(展开状态)
Feb 27 Python
教你怎么用Python监控愉客行车程
Apr 29 Python
python基于OpenCV模板匹配识别图片中的数字
Python insert() / append() 用法 Leetcode实战演示
Mar 31 #Python
tensorflow学习笔记之tfrecord文件的生成与读取
Mar 31 #Python
Python中快速掌握Data Frame的常用操作
Mar 31 #Python
pycharm无法导入lxml的解决办法
python某漫画app逆向
python爬虫--selenium模块
Mar 31 #Python
You might like
如何将一个表单同时提交到两个地方处理
2006/10/09 PHP
IIS6+PHP5+MySQL5+Zend Optimizer+phpMyAdmin安装配置图文教程 2009年
2009/06/08 PHP
php提示undefined index的几种解决方法
2012/05/21 PHP
通过dbi使用perl连接mysql数据库的方法
2014/04/16 PHP
ThinkPHP查询返回简单字段数组的方法
2014/08/25 PHP
WampServer下安装多个版本的PHP、mysql、apache图文教程
2015/01/07 PHP
PHP实现将浏览历史页面网址保存到cookie的方法
2015/01/26 PHP
PHP使用OB缓存实现静态化功能示例
2019/03/23 PHP
php进程(线程)通信基础之System V共享内存简单实例分析
2019/11/09 PHP
Thinkphp极验滑动验证码实现步骤解析
2020/11/24 PHP
新老版本juqery获取radio对象的方法
2010/03/01 Javascript
通过location.replace禁止浏览器后退防止重复提交
2014/09/04 Javascript
JavaScript基础语法、dom操作树及document对象
2014/12/02 Javascript
浅谈jQuery页面的滚动位置scrollTop、scrollLeft
2015/05/19 Javascript
JS用斜率判断鼠标进入DIV四个方向的方法
2016/11/07 Javascript
BootStrap框架中的data-[ ]自定义属性理解(推荐)
2017/02/14 Javascript
jQuery 实现图片的依次加载图片功能
2017/07/06 jQuery
小程序实现人脸识别功能(百度ai)
2018/12/23 Javascript
判断js数据类型的函数实例详解
2019/05/23 Javascript
Nodejs使用archiver-zip-encrypted库加密压缩文件时报错(解决方案)
2019/11/18 NodeJs
js实现无缝轮播图效果
2020/03/09 Javascript
JavaScript实现鼠标移入随机变换颜色
2020/11/24 Javascript
python实现列表中最大最小值输出的示例
2019/07/09 Python
python 寻找离散序列极值点的方法
2019/07/10 Python
Python Tornado实现WEB服务器Socket服务器共存并实现交互的方法
2020/05/26 Python
解决python3.x安装numpy成功但import出错的问题
2020/11/17 Python
LocalStorage记住用户和密码功能
2017/07/24 HTML / CSS
利用三角函数在canvas上画虚线的方法
2018/01/11 HTML / CSS
几个数据库方面的面试题
2016/07/01 面试题
学生会竞选自荐信
2013/10/12 职场文书
检察院院长群众路线教育实践活动个人整改措施
2014/10/04 职场文书
奖金申请报告模板
2015/05/15 职场文书
邹越演讲观后感
2015/06/15 职场文书
2016年国庆节宣传标语
2015/11/25 职场文书
离婚协议书范本(2016最新版)
2016/03/18 职场文书
Go 语言结构实例分析
2021/07/04 Golang