python基于OpenCV模板匹配识别图片中的数字


Posted in Python onMarch 31, 2021

前言

本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出“读取失败”。

操作环境:

  • OpenCV - 4.1.0
  • Python 3.8.1

程序目标

单个数字模板:(这些单个模板是我自己直接从图片上截取下来的)

python基于OpenCV模板匹配识别图片中的数字

要处理的图片:

python基于OpenCV模板匹配识别图片中的数字

终端输出:

python基于OpenCV模板匹配识别图片中的数字

文本输出:

python基于OpenCV模板匹配识别图片中的数字

思路讲解

python基于OpenCV模板匹配识别图片中的数字

代码讲解

首先定义两个会用到的函数

第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了

def cv_show(name, img):
 cv2.imshow(name, img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

第二个是图片缩放的函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
 dim = None
 (h, w) = image.shape[:2]
 if width is None and height is None:
  return image
 if width is None:
  r = height / float(h)
  dim = (int(w * r), height)
 else:
  r = width / float(w)
  dim = (width, int(h * r))
 resized = cv2.resize(image, dim, interpolation=inter)
 return resized

先把这个代码贴出来,方便后面单个函数代码的理解。

if __name__ == "__main__":
 # 存放数字模板列表
 digits = []
 # 当前运行目录
 now_dir = os.getcwd()
 print("当前运行目录:" + now_dir)
 numbers_address = now_dir + "\\numbers"
 load_digits()
 times = input("请输入程序运行次数:")
 for i in range(1, int(times) + 1):
  demo(i)
 print("输出成功,请检查本地temp.txt文件")
 while True:
  if input("输入小写‘q'并回车退出") == 'q':
   break

接下来是第一个主要函数,功能是加载数字模板并进行处理。

这个函数使用到了os模块,所以需要在开头import os

def load_digits():
 # 加载数字模板
 path = numbers_address # 这个地方就是获取当前运行目录 获取函数在主函数里面
 filename = os.listdir(path) # 获取文件夹文件
 for file in filename:
  img = cv2.imread(numbers_address + "\\" + file) # 读取图片
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 灰度处理
  # 自动阈值二值化 把图片处理成黑底白字
  img_temp = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找数字轮廓
  cnt = cv2.findContours(img_temp, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 获取数字矩形轮廓
  x, y, w, h = cv2.boundingRect(cnt[0])
  # 将单个数字区域进行缩放并存到列表中以备后面使用
  digit_roi = cv2.resize(img_temp[y:y+h, x:x+w], (57, 88))
  digits.append(digit_roi)

最后一个函数是程序的重点,实现功能就是识别出数字并输出。

不过这里把这个大函数分开两部分来讲解。

第一部分是对图片进行处理,最终把图片中的数字区域圈出来。

# 这两个都是核,参数可以改变
 rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
 sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
 # 这个就是读取图片的,可以暂时不理解
 target_path = now_dir + "\\" + "demo_" + str(index) + ".png"
 img_origin = cv2.imread(target_path)
 # 对图片进行缩放处理
 img_origin = resize(img_origin, width=300)
 # 灰度图
 img_gray = cv2.cvtColor(img_origin, cv2.COLOR_BGR2GRAY)
 # 高斯滤波 参数可以改变,选择效果最好的就可以
 gaussian = cv2.GaussianBlur(img_gray, (5, 5), 1)、
 # 自动二值化处理,黑底白字
 img_temp = cv2.threshold(
  gaussian, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
 # 顶帽操作
 img_top = cv2.morphologyEx(img_temp, cv2.MORPH_TOPHAT, rectKernel)
 # sobel操作
 img_sobel_x = cv2.Sobel(img_top, cv2.CV_64F, 1, 0, ksize=7)
 img_sobel_x = cv2.convertScaleAbs(img_sobel_x)
 img_sobel_y = cv2.Sobel(img_top, cv2.CV_64F, 0, 1, ksize=7)
 img_sobel_y = cv2.convertScaleAbs(img_sobel_y)
 img_sobel_xy = cv2.addWeighted(img_sobel_x, 1, img_sobel_y, 1, 0)
 # 闭操作
 img_closed = cv2.morphologyEx(img_sobel_xy, cv2.MORPH_CLOSE, rectKernel)
 # 自动二值化
 thresh = cv2.threshold(
  img_closed, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
 # 闭操作
 img_closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
 # 寻找数字轮廓
 cnts = cv2.findContours(
  img_closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
 # 轮廓排序
 (cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")
 # 存放正确数字序列(包含逗号)的轮廓,即过滤掉不需要的轮廓
 right_loc = []
 # 下面这个循环是对轮廓进行筛选,只有长宽比例大于2的才可以被添加到列表中
 # 这个比例可以根据具体情况来改变。除此之外,还可以通过轮廓周长和轮廓面积等对轮廓进行筛选
 for c in cnts:
  x, y, w, h = cv2.boundingRect(c)
  ar = w/float(h)
  if ar > 2:
   right_loc.append((x, y, w, h))

部分步骤的效果图:

python基于OpenCV模板匹配识别图片中的数字

可以看到在进行完最后一次闭操作后,一串数字全部变成白色区域,这样再进行轮廓检测就可以框出每一行数字的大致范围,这样就可以缩小数字处理的范围,可以在这些具体的区域内部对单个数字进行处理。

轮廓效果:

python基于OpenCV模板匹配识别图片中的数字

在这样进行以上步骤之后,就可以确定一行数字的范围了,下面就进行轮廓筛选把符合条件的轮廓存入列表。

注意:在代码中使用了(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")

这个函数的使用需要导入imutils,函数的最后一部分就是对每个数字轮廓进行分割,取出单个数字的区域然后进行模板匹配。

for (gx, gy, gw, gh) in right_loc:
  # 用于存放识别到的数字
  digit_out = []
  # 下面两个判断主要是防止出现越界的情况发生,如果发生的话图片读取会出错
  if (gy-10 < 0):
   now_gy = gy
  else:
   now_gy = gy-10
  if (gx - 10 < 0):
   now_gx = gx
  else:
   now_gx = gx-10
  # 选择图片兴趣区域
  img_digit = gaussian[now_gy:gy+gh+10, now_gx:gx+gw+10]
  # 二值化处理
  img_thresh = cv2.threshold(
   img_digit, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找所有轮廓 找出每个数字的轮廓(包含逗号) 正确的话应该有9个轮廓
  digitCnts = cv2.findContours(
   img_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 从左到右排列轮廓
  # 这样排列的好处是,正常情况下可以确定逗号的位置方便后面删除逗号
  (cnts, boundingBoxes) = contours.sort_contours(digitCnts, "left-to-right")
  # cnts是元组,需要先转换成列表,因为后面会对元素进行删除处理
  cnts = list(cnts)
  flag = 0
  # 判断轮廓数量是否有9个
  if len(cnts) == 9:
   # 删除逗号位置
   del cnts[1]
   del cnts[2]
   del cnts[3]
   del cnts[4]
   # 可以在转成元组
   cnts = tuple(cnts)
   # 存放单个数字的矩形区域
   num_roi = []
   for c in cnts:
    x, y, w, h = cv2.boundingRect(c)
    num_roi.append((x, y, w, h))
   # 对数字区域进行处理,把尺寸缩放到与数字模板相同
   # 对其进行简单处理,方便与模板匹配,增加匹配率
   for (rx, ry, rw, rh) in num_roi:
    roi = img_digit[ry:ry+rh, rx:rx+rw]
    roi = cv2.resize(roi, (57, 88))
    # 高斯滤波
    roi = cv2.GaussianBlur(roi, (5, 5), 1)
    # 二值化
    roi = cv2.threshold(
     roi, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    # 用于存放匹配率
    source = []
    # 遍历数字模板
    for digitROI in digits:
     # 进行模板匹配
     res = cv2.matchTemplate(
      roi, digitROI, cv2.TM_CCOEFF_NORMED)
     max_val = cv2.minMaxLoc(res)[1]
     source.append(max_val)
    # 这个需要仔细理解 这个就是把0-9数字中匹配度最高的数字存放到列表中
    digit_out.append(str(source.index(max(source))))
   # 打印最终输出值
   print(digit_out)
  else:
   print("读取失败")
   flag = 1
  # 将数字输出到txt文本中
  t = ''
  with open(now_dir + "\\temp.txt", 'a+') as q:
   if flag == 0:
    for content in digit_out:
     t = t + str(content) + " "
    q.write(t.strip(" "))
    q.write('\n')
    t = ''
   else:
    q.write("读取失败")
    q.write('\n')

注意理解:digit_out.append(str(source.index(max(source))))

这个是很重要的,列表source存放模板匹配的每个数字的匹配率,求出其中最大值的索引值,因为数字模板是按照0-9排列的,索引source的匹配率也是按照0-9排列的,所以每个元素的索引值就与相匹配的数字相同。这样的话,取得最大值的索引值就相当于取到了匹配率最高的数字。

完整代码

from imutils import contours
import cv2
import os


def cv_show(name, img):
 cv2.imshow(name, img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()


def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
 dim = None
 (h, w) = image.shape[:2]
 if width is None and height is None:
  return image
 if width is None:
  r = height / float(h)
  dim = (int(w * r), height)
 else:
  r = width / float(w)
  dim = (width, int(h * r))
 resized = cv2.resize(image, dim, interpolation=inter)
 return resized


def load_digits():
 # 加载数字模板
 path = numbers_address
 filename = os.listdir(path)
 for file in filename:
  # print(file)
  img = cv2.imread(
   numbers_address + "\\" + file)
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  img_temp = cv2.threshold(
   img_gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  cnt = cv2.findContours(img_temp, cv2.RETR_EXTERNAL,
        cv2.CHAIN_APPROX_NONE)[0]
  x, y, w, h = cv2.boundingRect(cnt[0])
  digit_roi = cv2.resize(img_temp[y:y+h, x:x+w], (57, 88))
  # 将数字模板存到列表中
  digits.append(digit_roi)


def demo(index):
 rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
 sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
 target_path = now_dir + "\\" + "demo_" + str(index) + ".png"
 img_origin = cv2.imread(target_path)
 img_origin = resize(img_origin, width=300)
 img_gray = cv2.cvtColor(img_origin, cv2.COLOR_BGR2GRAY)
 gaussian = cv2.GaussianBlur(img_gray, (5, 5), 1)
 img_temp = cv2.threshold(
  gaussian, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
 img_top = cv2.morphologyEx(img_temp, cv2.MORPH_TOPHAT, rectKernel)
 img_sobel_x = cv2.Sobel(img_top, cv2.CV_64F, 1, 0, ksize=7)
 img_sobel_x = cv2.convertScaleAbs(img_sobel_x)
 img_sobel_y = cv2.Sobel(img_top, cv2.CV_64F, 0, 1, ksize=7)
 img_sobel_y = cv2.convertScaleAbs(img_sobel_y)
 img_sobel_xy = cv2.addWeighted(img_sobel_x, 1, img_sobel_y, 1, 0)
 img_closed = cv2.morphologyEx(img_sobel_xy, cv2.MORPH_CLOSE, rectKernel)
 thresh = cv2.threshold(
  img_closed, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
 img_closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
 cnts = cv2.findContours(
  img_closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
 (cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")
 draw_img = img_origin.copy()
 draw_img = cv2.drawContours(draw_img, cnts, -1, (0, 0, 255), 1)
 cv_show("666", draw_img)

 # 存放正确数字序列(包含逗号)的轮廓,即过滤掉不需要的轮廓
 right_loc = []
 for c in cnts:
  x, y, w, h = cv2.boundingRect(c)
  ar = w/float(h)
  if ar > 2:
   right_loc.append((x, y, w, h))
 for (gx, gy, gw, gh) in right_loc:
  # 用于存放识别到的数字
  digit_out = []
  if (gy-10 < 0):
   now_gy = gy
  else:
   now_gy = gy-10
  if (gx - 10 < 0):
   now_gx = gx
  else:
   now_gx = gx-10
  img_digit = gaussian[now_gy:gy+gh+10, now_gx:gx+gw+10]
  # 二值化处理
  img_thresh = cv2.threshold(
   img_digit, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找轮廓 找出每个数字的轮廓(包含逗号) 正确的话应该有9个轮廓
  digitCnts = cv2.findContours(
   img_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 从左到右排列
  (cnts, boundingBoxes) = contours.sort_contours(digitCnts, "left-to-right")
  cnts = list(cnts)
  flag = 0
  if len(cnts) == 9:
   del cnts[1]
   del cnts[2]
   del cnts[3]
   del cnts[4]
   cnts = tuple(cnts)
   num_roi = []
   for c in cnts:
    x, y, w, h = cv2.boundingRect(c)
    num_roi.append((x, y, w, h))
   for (rx, ry, rw, rh) in num_roi:
    roi = img_digit[ry:ry+rh, rx:rx+rw]
    roi = cv2.resize(roi, (57, 88))
    roi = cv2.GaussianBlur(roi, (5, 5), 1)
    roi = cv2.threshold(
     roi, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    source = []
    for digitROI in digits:
     res = cv2.matchTemplate(
      roi, digitROI, cv2.TM_CCOEFF_NORMED)
     max_val = cv2.minMaxLoc(res)[1]
     source.append(max_val)
    digit_out.append(str(source.index(max(source))))
   cv2.rectangle(img_origin, (gx-5, gy-5),
       (gx+gw+5, gy+gh+5), (0, 0, 255), 1)
   print(digit_out)
  else:
   print("读取失败")
   flag = 1
  t = ''
  with open(now_dir + "\\temp.txt", 'a+') as q:
   if flag == 0:
    for content in digit_out:
     t = t + str(content) + " "
    q.write(t.strip(" "))
    q.write('\n')
    t = ''
   else:
    q.write("读取失败")
    q.write('\n')


if __name__ == "__main__":
 # 存放数字模板列表
 digits = []
 # 当前运行目录
 now_dir = os.getcwd()
 print("当前运行目录:" + now_dir)
 numbers_address = now_dir + "\\numbers"
 load_digits()
 times = input("请输入程序运行次数:")
 for i in range(1, int(times) + 1):
  demo(i)
 print("输出成功,请检查本地temp.txt文件")
 cv2.waitKey(0)
 cv2.destroyAllWindows()
 while True:
  if input("输入小写‘q'并回车退出") == 'q':
   break

整个文件下载地址:https://wwe.lanzous.com/iLSDunf850b

注意:如果想同时识别多个图片话,需要将图片统一改名为“demo_ + 数字序号.png” 例如:demo_1.png demo_2.png 同时在运行代码时输入图片个数即可。

总结

这个程序代码相对来说不算复杂,主要是对图像的一些基础处理需要注意。因为不同的图像想要识别成功需要进行不同程度的基础处理,所以在做的时候可以多输出几张图片检查一下那一步效果不太好并及时进行修改调整,这样才能达到最终比较好的效果。

以上就是python基于OpenCV模板匹配识别图片中的数字的详细内容,更多关于python 识别图片中的数字的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
在arcgis使用python脚本进行字段计算时是如何解决中文问题的
Oct 18 Python
Django使用httpresponse返回用户头像实例代码
Jan 26 Python
对numpy Array [: ,] 的取值方法详解
Jul 02 Python
Selenium元素的常用操作方法分析
Aug 10 Python
python生成器/yield协程/gevent写简单的图片下载器功能示例
Oct 28 Python
Python自动化完成tb喵币任务的操作方法
Oct 30 Python
opencv3/Python 稠密光流calcOpticalFlowFarneback详解
Dec 11 Python
解决pyqt5异常退出无提示信息的问题
Apr 08 Python
Python高并发和多线程有什么关系
Nov 14 Python
selenium框架中driver.close()和driver.quit()关闭浏览器
Dec 08 Python
详解Django关于StreamingHttpResponse与FileResponse文件下载的最优方法
Jan 07 Python
Jmeter调用Python脚本实现参数互相传递的实现
Jan 22 Python
Python insert() / append() 用法 Leetcode实战演示
Mar 31 #Python
tensorflow学习笔记之tfrecord文件的生成与读取
Mar 31 #Python
Python中快速掌握Data Frame的常用操作
Mar 31 #Python
pycharm无法导入lxml的解决办法
python某漫画app逆向
python爬虫--selenium模块
Mar 31 #Python
【超详细】八大排序算法的各项比较以及各自特点
You might like
一段实用的php验证码函数
2016/05/19 PHP
js对象的构造和继承实现代码
2010/12/05 Javascript
jQuery中对节点进行操作的相关介绍
2013/04/16 Javascript
现代 JavaScript 开发编程风格Idiomatic.js指南中文版
2014/05/28 Javascript
JS仿淘宝实现的简单滑动门效果代码
2015/10/14 Javascript
jQuery Ajax File Upload实例源码
2016/12/12 Javascript
AngulerJS学习之按需动态加载文件
2017/02/13 Javascript
纯JS实现图片验证码功能并兼容IE6-8(推荐)
2017/04/19 Javascript
微信小程序 功能函数小结(手机号验证*、密码验证*、获取验证码*)
2017/12/08 Javascript
JS实现的DOM插入节点操作示例
2018/04/04 Javascript
JavaScript fetch接口案例解析
2018/08/30 Javascript
在vue项目中正确使用iconfont的方法
2018/09/28 Javascript
vue请求本地自己编写的json文件的方法
2019/04/25 Javascript
layui数据表格跨行自动合并的例子
2019/09/02 Javascript
Bootstrap table 实现树形表格联动选中联动取消功能
2019/09/30 Javascript
微信小程序使用GoEasy实现websocket实时通讯
2020/05/19 Javascript
vue的webcamjs集成方式
2020/11/16 Javascript
JavaScript 实现继承的几种方式
2021/02/19 Javascript
[15:28]DOTA2 HEROS教学视频教你分分钟做大人-剧毒术士
2014/06/13 DOTA
使用Python制作微信跳一跳辅助
2018/01/31 Python
flask框架实现连接sqlite3数据库的方法分析
2018/07/16 Python
python按时间排序目录下的文件实现方法
2018/10/17 Python
python pandas读取csv后,获取列标签的方法
2018/11/12 Python
利用python计算windows全盘文件md5值的脚本
2019/07/27 Python
Python 堆叠柱状图绘制方法
2019/07/29 Python
Python代码实现http/https代理服务器的脚本
2019/08/12 Python
Django 简单实现分页与搜索功能的示例代码
2019/11/07 Python
Python3.7+tkinter实现查询界面功能
2019/12/24 Python
Python Celery异步任务队列使用方法解析
2020/08/10 Python
一个SQL面试题
2014/08/21 面试题
计算机大学生的自我评价
2013/10/15 职场文书
营业员个人总结的自我评价
2013/10/25 职场文书
电子商务专业个人的自我评价分享
2013/10/29 职场文书
幼儿园实习自我鉴定
2013/12/15 职场文书
法定代表人资格证明书
2014/09/11 职场文书
nginx日志格式分析和修改
2022/04/28 Servers