Python NumPy库安装使用笔记


Posted in Python onMay 18, 2015

1. NumPy安装
使用pip包管理工具进行安装

$ sudo pip install numpy

使用pip包管理工具安装ipython(交互式shell工具)
$ sudo pip instlal ipython

$ ipython --pylab  #pylab模式下, 会自动导入SciPy, NumPy, Matplotlib模块

2. NumPy基础

2.1. NumPy数组对象

具体解释可以看每一行代码后的解释和输出

In [1]: a = arange(5)  # 创建数据

In [2]: a.dtype

Out[2]: dtype('int64')  # 创建数组的数据类型

In [3]: a.shape  # 数组的维度, 输出为tuple

Out[3]: (5,)

In [6]: m = array([[1, 2], [3, 4]])  # array将list转换为NumPy数组对象

In [7]: m  # 创建多维数组

Out[7]:

array([[1, 2],

       [3, 4]])

In [10]: m.shape  # 维度为2 * 2

Out[10]: (2, 2)

In [14]: m[0, 0]  # 访问多维数组中特定位置的元素, 下标从0开始

Out[14]: 1

In [15]: m[0, 1]

Out[15]: 2

2.2. 数组的索引和切片

In [16]: a[2: 4]  # 切片操作类似与Python中list的切片操作

Out[16]: array([2, 3])

In [18]: a[2 : 5: 2]  # 切片步长为2

Out[18]: array([2, 4])

In [19]: a[ : : -1]  # 翻转数组

Out[19]: array([4, 3, 2, 1, 0])

In [20]: b = arange(24).reshape(2, 3, 4)  # 修改数组的维度

In [21]: b.shape

Out[21]: (2, 3, 4)

In [22]: b  # 打印数组

Out[22]:

array([[[ 0,  1,  2,  3],

        [ 4,  5,  6,  7],

        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],

        [16, 17, 18, 19],

        [20, 21, 22, 23]]])

In [23]: b[1, 2, 3]  # 选取特定元素

Out[23]: 23

In [24]: b[ : , 0, 0]  # 忽略某个下标可以用冒号代替

Out[24]: array([ 0, 12])

In [23]: b[1, 2, 3]

Out[23]: 23

In [24]: b[ : , 0, 0]  # 忽略多个下标可以使用省略号代替

Out[24]: array([ 0, 12])

In [26]: b.ravel()  # 数组的展平操作

Out[26]:

array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,

       17, 18, 19, 20, 21, 22, 23])

In [27]: b.flatten()  # 与revel功能相同, 这个函数会请求分配内存来保存结果

Out[27]:

array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,

       17, 18, 19, 20, 21, 22, 23])

In [30]: b.shape = (6, 4)  # 可以直接对shape属性赋值元组来设置维度

In [31]: b

Out[31]:

array([[ 0,  1,  2,  3],

       [ 4,  5,  6,  7],

       [ 8,  9, 10, 11],

       [12, 13, 14, 15],

       [16, 17, 18, 19],

       [20, 21, 22, 23]])

In [30]: b.shape = (6, 4)  # 矩阵的转置

In [31]: b

Out[31]:

array([[ 0,  1,  2,  3],

       [ 4,  5,  6,  7],

       [ 8,  9, 10, 11],

       [12, 13, 14, 15],

       [16, 17, 18, 19],

       [20, 21, 22, 23]])

2.3. 组合数组

In [1]: a = arange(9).reshape(3, 3)  # 生成数组对象并改变维度

In [2]: a

Out[2]:

array([[0, 1, 2],

       [3, 4, 5],

       [6, 7, 8]])

In [3]: b = a * 2  # 对a数组对象所有元素乘2

In [4]: b

Out[4]:

array([[ 0,  2,  4],

       [ 6,  8, 10],

       [12, 14, 16]])

#######################

In [5]: hstack((a, b))  # 水平组合数组a和数组b

Out[5]:

array([[ 0,  1,  2,  0,  2,  4],

       [ 3,  4,  5,  6,  8, 10],

       [ 6,  7,  8, 12, 14, 16]])

       

In [6]: vstack((a, b))  # 垂直组合数组a和数组b

Out[6]:

array([[ 0,  1,  2],

       [ 3,  4,  5],

       [ 6,  7,  8],

       [ 0,  2,  4],

       [ 6,  8, 10],

       [12, 14, 16]])

In [7]: dstack((a, b))  # 深度组合数组, 沿z轴方向层叠组合数组

Out[7]:

array([[[ 0,  0],

        [ 1,  2],

        [ 2,  4]],

       [[ 3,  6],

        [ 4,  8],

        [ 5, 10]],

       [[ 6, 12],

        [ 7, 14],

        [ 8, 16]]])

2.4. 分割数组

In [8]: a

Out[8]:

array([[0, 1, 2],

       [3, 4, 5],

       [6, 7, 8]])

In [9]: hsplit(a, 3)  # 将数组沿水平方向分割成三个相同大小的子数组

Out[9]:

[array([[0],

        [3],

        [6]]), 

 array([[1],

        [4],

        [7]]), 

 array([[2],

        [5],

        [8]])]

In [10]: vsplit(a, 3)  # 将数组沿垂直方向分割成三个子数组

Out[10]: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

2.5. 数组的属性

In [12]: a.ndim  # 给出数组的尾数或数组的轴数

Out[12]: 2

In [13]: a.size  # 数组中元素的个数

Out[13]: 9

In [14]: a.itemsize  # 数组中元素在内存中所占字节数(int64)

Out[14]: 8

In [15]: a.nbytes  # 数组所占总字节数, size * itemsize

Out[15]: 72

In [18]: a.T  # 和transpose函数一样, 求数组的转置

Out[18]:

array([[0, 3, 6],

       [1, 4, 7],

       [2, 5, 8]])

2.6. 数组的转换

In [19]: a.tolist()  # 将NumPy数组转换成python中的list

Out[19]: [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

3. 常用函数

In [22]: c = eye(2)  # 构建2维单位矩阵

In [23]: c

Out[23]:

array([[ 1.,  0.],

       [ 0.,  1.]])

In [25]: savetxt("eye.txt", c)  # 将矩阵保存到文件中

In [5]: c, v = loadtxt("test.csv", delimiter=",", usecols=(0, 1), unpack=True)  # 分隔符为, usecols为元组表示要获取的字段数据(每一行的第零段和第一段), unpack为True表示拆分存储不同列的数据, 分别存入c, v

In [12]: c

Out[12]: array([ 1.,  4.,  7.])

In [13]: mean(c)  # 计算矩阵c的mean均值

Out[13]: 4.0

In [14]: np.max(c)  # 求数组中的最大值

Out[14]: 7.0

In [15]: np.min(c)  # 求数组中的最小值

Out[15]: 1.0

In [16]: np.ptp(c)  # 返回数组最大值和最小值之间的差值

Out[16]: 6.0

In [18]: numpy.median(c)  # 找到数组中的中位数(中间两个数的平均值)

Out[18]: 4.0

In [19]: numpy.var(c)  # 计算数组的方差

Out[19]: 6.0

In [20]: numpy.diff(c)  # 返回相邻数组元素的差值构成的数组

Out[20]: array([ 3.,  3.])

In [21]: numpy.std(c)  # 计算数组的标准差

Out[21]: 2.4494897427831779

In [22]: numpy.where(c > 3)  # 返回满足条件的数组元素的下标组成的数组

Out[22]: (array([1, 2]),)
Python 相关文章推荐
Python获取暗黑破坏神3战网前1000命位玩家的英雄技能统计
Jul 04 Python
Python快速排序算法实例分析
Nov 29 Python
Python实现合并同一个文件夹下所有PDF文件的方法示例
Apr 28 Python
浅析Python数据处理
May 02 Python
python 格式化输出百分号的方法
Jan 20 Python
Python实现E-Mail收集插件实例教程
Feb 06 Python
Python scipy的二维图像卷积运算与图像模糊处理操作示例
Sep 06 Python
python实现LRU热点缓存及原理
Oct 29 Python
python实现大战外星人小游戏实例代码
Dec 26 Python
pandas按照列的值排序(某一列或者多列)
Dec 13 Python
python实现简单倒计时功能
Apr 21 Python
Pytorch实现图像识别之数字识别(附详细注释)
May 11 Python
Python中转换角度为弧度的radians()方法
May 18 #Python
Python Matplotlib库入门指南
May 18 #Python
解读Python中degrees()方法的使用
May 18 #Python
python修改操作系统时间的方法
May 18 #Python
Python中的hypot()方法使用简介
May 18 #Python
Python批量转换文件编码格式
May 17 #Python
Python实现批量下载文件
May 17 #Python
You might like
PHP生成唯一的促销/优惠/折扣码(附源码)
2012/12/28 PHP
laravel 使用事件系统统计浏览量的实现
2019/10/16 PHP
PHPExcel实现的读取多工作表操作示例
2020/04/14 PHP
从JavaScript的函数重名看其初始化方式
2007/03/08 Javascript
JavaScript高级程序设计 事件学习笔记
2011/09/10 Javascript
JavaScript之引用类型介绍
2012/08/10 Javascript
在服务端(Page.Write)调用自定义的JS方法详解
2013/08/09 Javascript
jquery 新建的元素事件绑定问题解决方案
2014/06/12 Javascript
jQuery异步加载数据并添加事件示例
2014/08/24 Javascript
使用jQuery管理选择结果
2015/01/20 Javascript
JS定义网页表单提交(submit)的方法
2015/03/20 Javascript
js实现鼠标滑过文字链接色彩变化的效果
2015/05/06 Javascript
莱鸟介绍window.print()方法
2016/01/06 Javascript
js从数组中删除指定值(不是指定位置)的元素实现代码
2016/09/13 Javascript
Angular directive递归实现目录树结构代码实例
2017/05/05 Javascript
vue微信分享 vue实现当前页面分享其他页面
2017/12/02 Javascript
ng-alain表单使用方式详解
2018/07/10 Javascript
浅谈Vue.use到底是什么鬼
2020/01/21 Javascript
[02:43]DOTA2英雄基础教程 德鲁伊
2014/01/13 DOTA
Python中decorator使用实例
2015/04/14 Python
Python使用pip安装pySerial串口通讯模块
2018/04/20 Python
Django网络框架之创建虚拟开发环境操作示例
2019/06/06 Python
快速解决Django关闭Debug模式无法加载media图片与static静态文件
2020/04/07 Python
html5+css3之制作header实例与更新
2020/12/21 HTML / CSS
世界汽车零件:World Car Parts
2019/09/04 全球购物
Penhaligon’s英国官网:成立于1870年的英国香水制造商
2021/02/18 全球购物
软件测试工程师笔试题带答案
2015/03/27 面试题
技校生自我鉴定
2013/12/08 职场文书
八项规定个人对照检查材料思想汇报
2014/09/25 职场文书
介绍信格式样本
2015/05/05 职场文书
关于迟到的检讨书
2015/05/06 职场文书
银行安全保卫工作总结
2015/08/10 职场文书
2016年离婚协议书范文
2016/03/18 职场文书
学习心得体会
2019/06/20 职场文书
Python使用psutil库对系统数据进行采集监控的方法
2021/08/23 Python
Mysql表数据比较大情况下修改添加字段的方法实例
2022/06/28 MySQL