Python NumPy库安装使用笔记


Posted in Python onMay 18, 2015

1. NumPy安装
使用pip包管理工具进行安装

$ sudo pip install numpy

使用pip包管理工具安装ipython(交互式shell工具)
$ sudo pip instlal ipython

$ ipython --pylab  #pylab模式下, 会自动导入SciPy, NumPy, Matplotlib模块

2. NumPy基础

2.1. NumPy数组对象

具体解释可以看每一行代码后的解释和输出

In [1]: a = arange(5)  # 创建数据

In [2]: a.dtype

Out[2]: dtype('int64')  # 创建数组的数据类型

In [3]: a.shape  # 数组的维度, 输出为tuple

Out[3]: (5,)

In [6]: m = array([[1, 2], [3, 4]])  # array将list转换为NumPy数组对象

In [7]: m  # 创建多维数组

Out[7]:

array([[1, 2],

       [3, 4]])

In [10]: m.shape  # 维度为2 * 2

Out[10]: (2, 2)

In [14]: m[0, 0]  # 访问多维数组中特定位置的元素, 下标从0开始

Out[14]: 1

In [15]: m[0, 1]

Out[15]: 2

2.2. 数组的索引和切片

In [16]: a[2: 4]  # 切片操作类似与Python中list的切片操作

Out[16]: array([2, 3])

In [18]: a[2 : 5: 2]  # 切片步长为2

Out[18]: array([2, 4])

In [19]: a[ : : -1]  # 翻转数组

Out[19]: array([4, 3, 2, 1, 0])

In [20]: b = arange(24).reshape(2, 3, 4)  # 修改数组的维度

In [21]: b.shape

Out[21]: (2, 3, 4)

In [22]: b  # 打印数组

Out[22]:

array([[[ 0,  1,  2,  3],

        [ 4,  5,  6,  7],

        [ 8,  9, 10, 11]],

       [[12, 13, 14, 15],

        [16, 17, 18, 19],

        [20, 21, 22, 23]]])

In [23]: b[1, 2, 3]  # 选取特定元素

Out[23]: 23

In [24]: b[ : , 0, 0]  # 忽略某个下标可以用冒号代替

Out[24]: array([ 0, 12])

In [23]: b[1, 2, 3]

Out[23]: 23

In [24]: b[ : , 0, 0]  # 忽略多个下标可以使用省略号代替

Out[24]: array([ 0, 12])

In [26]: b.ravel()  # 数组的展平操作

Out[26]:

array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,

       17, 18, 19, 20, 21, 22, 23])

In [27]: b.flatten()  # 与revel功能相同, 这个函数会请求分配内存来保存结果

Out[27]:

array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,

       17, 18, 19, 20, 21, 22, 23])

In [30]: b.shape = (6, 4)  # 可以直接对shape属性赋值元组来设置维度

In [31]: b

Out[31]:

array([[ 0,  1,  2,  3],

       [ 4,  5,  6,  7],

       [ 8,  9, 10, 11],

       [12, 13, 14, 15],

       [16, 17, 18, 19],

       [20, 21, 22, 23]])

In [30]: b.shape = (6, 4)  # 矩阵的转置

In [31]: b

Out[31]:

array([[ 0,  1,  2,  3],

       [ 4,  5,  6,  7],

       [ 8,  9, 10, 11],

       [12, 13, 14, 15],

       [16, 17, 18, 19],

       [20, 21, 22, 23]])

2.3. 组合数组

In [1]: a = arange(9).reshape(3, 3)  # 生成数组对象并改变维度

In [2]: a

Out[2]:

array([[0, 1, 2],

       [3, 4, 5],

       [6, 7, 8]])

In [3]: b = a * 2  # 对a数组对象所有元素乘2

In [4]: b

Out[4]:

array([[ 0,  2,  4],

       [ 6,  8, 10],

       [12, 14, 16]])

#######################

In [5]: hstack((a, b))  # 水平组合数组a和数组b

Out[5]:

array([[ 0,  1,  2,  0,  2,  4],

       [ 3,  4,  5,  6,  8, 10],

       [ 6,  7,  8, 12, 14, 16]])

       

In [6]: vstack((a, b))  # 垂直组合数组a和数组b

Out[6]:

array([[ 0,  1,  2],

       [ 3,  4,  5],

       [ 6,  7,  8],

       [ 0,  2,  4],

       [ 6,  8, 10],

       [12, 14, 16]])

In [7]: dstack((a, b))  # 深度组合数组, 沿z轴方向层叠组合数组

Out[7]:

array([[[ 0,  0],

        [ 1,  2],

        [ 2,  4]],

       [[ 3,  6],

        [ 4,  8],

        [ 5, 10]],

       [[ 6, 12],

        [ 7, 14],

        [ 8, 16]]])

2.4. 分割数组

In [8]: a

Out[8]:

array([[0, 1, 2],

       [3, 4, 5],

       [6, 7, 8]])

In [9]: hsplit(a, 3)  # 将数组沿水平方向分割成三个相同大小的子数组

Out[9]:

[array([[0],

        [3],

        [6]]), 

 array([[1],

        [4],

        [7]]), 

 array([[2],

        [5],

        [8]])]

In [10]: vsplit(a, 3)  # 将数组沿垂直方向分割成三个子数组

Out[10]: [array([[0, 1, 2]]), array([[3, 4, 5]]), array([[6, 7, 8]])]

2.5. 数组的属性

In [12]: a.ndim  # 给出数组的尾数或数组的轴数

Out[12]: 2

In [13]: a.size  # 数组中元素的个数

Out[13]: 9

In [14]: a.itemsize  # 数组中元素在内存中所占字节数(int64)

Out[14]: 8

In [15]: a.nbytes  # 数组所占总字节数, size * itemsize

Out[15]: 72

In [18]: a.T  # 和transpose函数一样, 求数组的转置

Out[18]:

array([[0, 3, 6],

       [1, 4, 7],

       [2, 5, 8]])

2.6. 数组的转换

In [19]: a.tolist()  # 将NumPy数组转换成python中的list

Out[19]: [[0, 1, 2], [3, 4, 5], [6, 7, 8]]

3. 常用函数

In [22]: c = eye(2)  # 构建2维单位矩阵

In [23]: c

Out[23]:

array([[ 1.,  0.],

       [ 0.,  1.]])

In [25]: savetxt("eye.txt", c)  # 将矩阵保存到文件中

In [5]: c, v = loadtxt("test.csv", delimiter=",", usecols=(0, 1), unpack=True)  # 分隔符为, usecols为元组表示要获取的字段数据(每一行的第零段和第一段), unpack为True表示拆分存储不同列的数据, 分别存入c, v

In [12]: c

Out[12]: array([ 1.,  4.,  7.])

In [13]: mean(c)  # 计算矩阵c的mean均值

Out[13]: 4.0

In [14]: np.max(c)  # 求数组中的最大值

Out[14]: 7.0

In [15]: np.min(c)  # 求数组中的最小值

Out[15]: 1.0

In [16]: np.ptp(c)  # 返回数组最大值和最小值之间的差值

Out[16]: 6.0

In [18]: numpy.median(c)  # 找到数组中的中位数(中间两个数的平均值)

Out[18]: 4.0

In [19]: numpy.var(c)  # 计算数组的方差

Out[19]: 6.0

In [20]: numpy.diff(c)  # 返回相邻数组元素的差值构成的数组

Out[20]: array([ 3.,  3.])

In [21]: numpy.std(c)  # 计算数组的标准差

Out[21]: 2.4494897427831779

In [22]: numpy.where(c > 3)  # 返回满足条件的数组元素的下标组成的数组

Out[22]: (array([1, 2]),)
Python 相关文章推荐
python中pycurl库的用法实例
Sep 30 Python
Python创建xml的方法
Mar 10 Python
解决pandas中读取中文名称的csv文件报错的问题
Jul 04 Python
python文本数据处理学习笔记详解
Jun 17 Python
用python生成(动态彩色)二维码的方法(使用myqr库实现)
Jun 24 Python
对python中url参数编码与解码的实例详解
Jul 25 Python
pycharm部署、配置anaconda环境的教程
Mar 24 Python
浅谈Django中的QueryDict元素为数组的坑
Mar 31 Python
django model的update时auto_now不被更新的原因及解决方式
Apr 01 Python
Python greenlet和gevent使用代码示例解析
Apr 01 Python
解决Pycharm双击图标启动不了的问题(JetBrains全家桶通用)
Aug 07 Python
python re模块常见用法例举
Mar 01 Python
Python中转换角度为弧度的radians()方法
May 18 #Python
Python Matplotlib库入门指南
May 18 #Python
解读Python中degrees()方法的使用
May 18 #Python
python修改操作系统时间的方法
May 18 #Python
Python中的hypot()方法使用简介
May 18 #Python
Python批量转换文件编码格式
May 17 #Python
Python实现批量下载文件
May 17 #Python
You might like
php array_unique之后json_encode需要注意
2011/01/02 PHP
PHP数组无限分级数据的层级化处理代码
2012/12/29 PHP
wordpress安装过程中遇到中文乱码的处理方法
2015/04/21 PHP
简单谈谈 php 文件锁
2017/02/19 PHP
PHP receiveMail实现收邮件功能
2018/04/25 PHP
php和redis实现秒杀活动的流程
2019/07/17 PHP
解决laravel中日志权限莫名变成了root的问题
2019/10/17 PHP
TP5框架使用QueryList采集框架爬小说操作示例
2020/03/26 PHP
将函数的实际参数转换成数组的方法
2010/01/25 Javascript
简略说明Javascript中的= =(等于)与= = =(全等于)区别
2013/04/16 Javascript
深入理解javascript动态插入技术
2013/11/12 Javascript
JavaScript调用ajax获取文本文件内容实现代码
2014/03/28 Javascript
JS、CSS以及img对DOMContentLoaded事件的影响
2014/08/12 Javascript
JS实现不使用图片仿Windows右键菜单效果代码
2015/10/22 Javascript
Bootstrap表单布局样式源代码
2016/07/04 Javascript
非常优秀的JS图片轮播插件Swiper的用法
2017/01/03 Javascript
JS优化与惰性载入函数实例分析
2017/04/06 Javascript
修改 bootstrap table 默认detailRow样式的实例代码
2017/07/21 Javascript
JS实现单张或多张图片持续无缝滚动的示例代码
2020/05/10 Javascript
JS实现拖拽元素时与另一元素碰撞检测
2020/08/27 Javascript
vue-cli 关闭热更新操作
2020/09/18 Javascript
[02:36]DOTA2英雄基础教程 一击致命幻影刺客
2013/12/06 DOTA
Python提示[Errno 32]Broken pipe导致线程crash错误解决方法
2014/11/19 Python
Python UnicodeEncodeError: 'gbk' codec can't encode character 解决方法
2015/04/24 Python
使用Python读写及压缩和解压缩文件的示例
2016/07/08 Python
python安装pil库方法及代码
2019/06/25 Python
python爬虫 爬取58同城上所有城市的租房信息详解
2019/07/30 Python
pytorch获取vgg16-feature层输出的例子
2019/08/20 Python
python图形用户接口实例详解
2019/12/16 Python
关于pytorch处理类别不平衡的问题
2019/12/31 Python
tensorflow 自定义损失函数示例代码
2020/02/05 Python
工作过失检讨书
2014/02/23 职场文书
员工年终自我评价
2014/09/14 职场文书
冰峪沟导游词
2015/02/09 职场文书
写给同学的新学期寄语
2015/02/27 职场文书
于丹讲座视频观后感
2015/06/15 职场文书