Posted in Python onOctober 29, 2019
LRU
LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。
基于列表+Hash的LRU算法实现。
- 访问某个热点时,先将其从原来的位置删除,再将其插入列表的表头
- 为使读取及删除操作的时间复杂度为O(1),使用hash存储热点的信息的键值
class LRUCaceh(): def __init__(self, size=5): ''' 默认队列的长度为5 使用列表来维护,使用字典来查询 ''' self.size = size self.cache = dict() self.key = [] def get(self, key): ''' 获取缓存中的key的值 ''' if self.cache.get(key): self.key.remove(key) self.key.insert(0, key) return self.cache[key] return None def set(self, key, value): ''' 设置缓存,实现缓存淘汰 ''' if self.cache.get(key): self.cache.pop(key) self.cache[key] = value self.key.remove(key) self.key.insert(0, key) elif len(self.key) == self.size: old_key = self.key.pop() self.key.insert(0, key) self.cache.pop(old_key) self.cache[key] = value else: self.key.insert(0, key) self.cache[key] = value
总结
以上所述是小编给大家介绍的python实现LRU热点缓存及原理,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对三水点靠木网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!
python实现LRU热点缓存及原理
- Author -
dpj999声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@