Python first-order-model实现让照片动起来


Posted in Python onJune 25, 2022

前言

看到一个很有意思的项目,其实在之前就在百度飞浆等平台上看到类似的实现效果。

可以将照片按照视频的表情,动起来。看一下项目给出的效果。

Python first-order-model实现让照片动起来

项目地址:first-order-model项目地址

还是老样子,不管作者给出的种种效果,自己测试一下。

资源下载和安装

我们先看一下README关于项目的基本信息,可以看出除了表情驱动照片,还可以姿态迁移。

Python first-order-model实现让照片动起来

Python first-order-model实现让照片动起来

模型文件提供了线上的下载地址。

Python first-order-model实现让照片动起来

文件很大而且难下,我下好了放到我的云盘上,可以从下面云盘下载。

链接 提取码:ikix

模型文件放到根目录下新建的checkpoint文件夹下。

Python first-order-model实现让照片动起来

Python first-order-model实现让照片动起来

将requirements.txt中的依赖安装一下。

Python first-order-model实现让照片动起来

安装补充 

在测试README中的命令的时候,如果出现一下报错。

Traceback (most recent call last):
  File "demo.py", line 17, in <module>
    from animate import normalize_kp
  File "D:\spyder\first-order-model\animate.py", line 7, in <module>
    from frames_dataset import PairedDataset
  File "D:\spyder\first-order-model\frames_dataset.py", line 10, in <module>
    from augmentation import AllAugmentationTransform
  File "D:\spyder\first-order-model\augmentation.py", line 13, in <module>
    import torchvision
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\__init__.py", line 2, in <module>
    from torchvision import datasets
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\datasets\__init__.py", line 9, in <module>
    from .fakedata import FakeData
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\datasets\fakedata.py", line 3, in <module>
    from .. import transforms
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\__init__.py", line 1, in <module>
    from .transforms import *
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\transforms.py", line 16, in <module>
    from . import functional as F
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\functional.py", line 5, in <module>
    from PIL import Image, ImageOps, ImageEnhance, PILLOW_VERSION
ImportError: cannot import name 'PILLOW_VERSION' from 'PIL' (C:\Users\huyi\.conda\envs\fom\lib\site-packages\PIL\__init__.py)

这个问题主要是我使用的pillow版本过高的原因,如果不想找对应的低版本,可以按照我的方式解决。 

1、修改functional.py代码,将PILLOW_VERSION调整为__version__。

Python first-order-model实现让照片动起来

2、将imageio升级。

pip install --upgrade imageio -i https://pypi.douban.com/simple

3、安装imageio_ffmpeg模块。

pip install imageio-ffmpeg -i https://pypi.douban.com/simple

工具代码验证

官方给出的使用方法我就不重复测试,大家可以按照下面的命令去测试一下。

Python first-order-model实现让照片动起来

这里我推荐一个可视化的库gradio,下面我将demo.py的代码改造了一下。

新的工具文件代码如下:

#!/user/bin/env python
# coding=utf-8
"""
@project : first-order-model
@author  : 剑客阿良_ALiang
@file   : hy_gradio.py
@ide    : PyCharm
@time   : 2022-06-23 14:35:28
"""
import uuid
from typing import Optional
 
import gradio as gr
import matplotlib
 
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from tqdm import tqdm
 
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from sync_batchnorm import DataParallelWithCallback
 
from modules.generator import OcclusionAwareGenerator
from modules.keypoint_detector import KPDetector
from animate import normalize_kp
from scipy.spatial import ConvexHull
 
if sys.version_info[0] < 3:
    raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
 
 
def load_checkpoints(config_path, checkpoint_path, cpu=False):
    with open(config_path) as f:
        config = yaml.load(f)
 
    generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
                                        **config['model_params']['common_params'])
    if not cpu:
        generator.cuda()
 
    kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
                             **config['model_params']['common_params'])
    if not cpu:
        kp_detector.cuda()
 
    if cpu:
        checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
    else:
        checkpoint = torch.load(checkpoint_path)
 
    generator.load_state_dict(checkpoint['generator'])
    kp_detector.load_state_dict(checkpoint['kp_detector'])
 
    if not cpu:
        generator = DataParallelWithCallback(generator)
        kp_detector = DataParallelWithCallback(kp_detector)
 
    generator.eval()
    kp_detector.eval()
 
    return generator, kp_detector
 
 
def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True,
                   cpu=False):
    with torch.no_grad():
        predictions = []
        source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
        if not cpu:
            source = source.cuda()
        driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
        kp_source = kp_detector(source)
        kp_driving_initial = kp_detector(driving[:, :, 0])
 
        for frame_idx in tqdm(range(driving.shape[2])):
            driving_frame = driving[:, :, frame_idx]
            if not cpu:
                driving_frame = driving_frame.cuda()
            kp_driving = kp_detector(driving_frame)
            kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
                                   kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
                                   use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
            out = generator(source, kp_source=kp_source, kp_driving=kp_norm)
 
            predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
    return predictions
 
 
def find_best_frame(source, driving, cpu=False):
    import face_alignment
 
    def normalize_kp(kp):
        kp = kp - kp.mean(axis=0, keepdims=True)
        area = ConvexHull(kp[:, :2]).volume
        area = np.sqrt(area)
        kp[:, :2] = kp[:, :2] / area
        return kp
 
    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
                                      device='cpu' if cpu else 'cuda')
    kp_source = fa.get_landmarks(255 * source)[0]
    kp_source = normalize_kp(kp_source)
    norm = float('inf')
    frame_num = 0
    for i, image in tqdm(enumerate(driving)):
        kp_driving = fa.get_landmarks(255 * image)[0]
        kp_driving = normalize_kp(kp_driving)
        new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
        if new_norm < norm:
            norm = new_norm
            frame_num = i
    return frame_num
 
 
def h_interface(input_image: str):
    parser = ArgumentParser()
    opt = parser.parse_args()
    opt.config = "./config/vox-256.yaml"
    opt.checkpoint = "./checkpoint/vox-cpk.pth.tar"
    opt.source_image = input_image
    opt.driving_video = "./data/input/ts.mp4"
    opt.result_video = "./data/result/{}.mp4".format(uuid.uuid1().hex)
    opt.relative = True
    opt.adapt_scale = True
    opt.cpu = True
    opt.find_best_frame = False
    opt.best_frame = False
    # source_image = imageio.imread(opt.source_image)
    source_image = opt.source_image
    reader = imageio.get_reader(opt.driving_video)
    fps = reader.get_meta_data()['fps']
    driving_video = []
    try:
        for im in reader:
            driving_video.append(im)
    except RuntimeError:
        pass
    reader.close()
 
    source_image = resize(source_image, (256, 256))[..., :3]
    driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
    generator, kp_detector = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint, cpu=opt.cpu)
 
    if opt.find_best_frame or opt.best_frame is not None:
        i = opt.best_frame if opt.best_frame is not None else find_best_frame(source_image, driving_video, cpu=opt.cpu)
        print("Best frame: " + str(i))
        driving_forward = driving_video[i:]
        driving_backward = driving_video[:(i + 1)][::-1]
        predictions_forward = make_animation(source_image, driving_forward, generator, kp_detector,
                                             relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
        predictions_backward = make_animation(source_image, driving_backward, generator, kp_detector,
                                              relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
        predictions = predictions_backward[::-1] + predictions_forward[1:]
    else:
        predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=opt.relative,
                                     adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
    imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)
    return opt.result_video
 
 
if __name__ == "__main__":
    demo = gr.Interface(h_interface, inputs=[gr.Image(shape=(500, 500))], outputs=[gr.Video()])
 
    demo.launch()
    # h_interface("C:\\Users\\huyi\\Desktop\\xx3.jpg")

代码说明

1、将原demo.py中的main函数内容,重新编辑为h_interface方法,输入是想要驱动的图片。

2、其中driving_video参数使用了我自己录制的一段表情视频ts.mp4,我建议在使用的时候可以自己用手机录制一段替换。

3、使用gradio来生成方法的页面,下面会展示给大家看。

4、使用uuid为结果视频命名。

执行结果如下

Running on local URL:  http://127.0.0.1:7860/
To create a public link, set `share=True` in `launch()`.

打开本地的地址:http://localhost:7860/

可以看到我们实现的交互界面如下:

Python first-order-model实现让照片动起来

我们上传一下我准备的样例图片,提交制作。

Python first-order-model实现让照片动起来

看一下执行的日志,如下图。

Python first-order-model实现让照片动起来

看一下制作结果。

Python first-order-model实现让照片动起来

由于上传不了视频,我将视频转成了gif。

Python first-order-model实现让照片动起来

还是蛮有意思的,具体的参数调优我就不弄了,大家可能根据需要调整我提供的方法里面的参数。

以上就是Python first-order-model实现让照片动起来的详细内容,更多关于Python 照片动起来的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python中元类用法实例
Oct 10 Python
Python实现判断字符串中包含某个字符的判断函数示例
Jan 08 Python
Python requests发送post请求的一些疑点
May 20 Python
Python实现常见的回文字符串算法
Nov 14 Python
解决python Markdown模块乱码的问题
Feb 14 Python
VSCode Python开发环境配置的详细步骤
Feb 22 Python
python设置随机种子实例讲解
Sep 12 Python
Python 、Pycharm、Anaconda三者的区别与联系、安装过程及注意事项
Oct 11 Python
Python操作注册表详细步骤介绍
Feb 05 Python
Python之Django自动实现html代码(下拉框,数据选择)
Mar 13 Python
python 用Matplotlib作图中有多个Y轴
Nov 28 Python
如何利用Matlab制作一款真正的拼图小游戏
May 11 Python
python热力图实现的完整实例
彻底弄懂Python中的回调函数(callback)
Jun 25 #Python
利用Python实现翻译HTML中的文本字符串
Jun 21 #Python
使用scrapy实现增量式爬取方式
Jun 21 #Python
python+opencv实现目标跟踪过程
Jun 21 #Python
使用opencv-python如何打开USB或者笔记本前置摄像头
Python+DeOldify实现老照片上色功能
You might like
我用php+mysql写的留言本
2006/10/09 PHP
Http 1.1 Etag 与 Last-Modified提高php效率
2008/01/10 PHP
8个PHP程序员常用的功能汇总
2014/12/18 PHP
php语言的7种基本的排序方法
2020/12/28 PHP
PHP的Yii框架中View视图的使用进阶
2016/03/29 PHP
PHP数组操作简单案例分析
2016/10/15 PHP
微信企业转账之入口类分装php代码
2018/10/01 PHP
yii2.0框架场景的简单使用示例
2020/01/25 PHP
php使用gearman进行任务分发操作实例详解
2020/02/26 PHP
JSQL 基于客户端的成绩统计实现方法
2010/05/05 Javascript
jquery插件 autoComboBox 下拉框
2010/12/22 Javascript
jQuery模拟点击A标记示例参考
2014/04/17 Javascript
Jquery中使用show()与hide()方法动画显示和隐藏图片
2015/10/08 Javascript
JavaScript数据结构与算法之栈与队列
2016/01/29 Javascript
聊一聊JS中this的指向问题
2016/06/17 Javascript
React Native之TextInput组件解析示例
2017/08/22 Javascript
ligerUI---ListBox(列表框可移动的实例)
2017/11/28 Javascript
node中的密码安全(加密)
2018/09/17 Javascript
详解nuxt路由鉴权(express模板)
2018/11/21 Javascript
使用webpack搭建vue项目实现脚手架功能
2019/03/15 Javascript
JavaScript代码异常监控实现过程详解
2020/02/17 Javascript
javascript实现贪吃蛇游戏(娱乐版)
2020/08/17 Javascript
[33:42]LGD vs OG 2018国际邀请赛小组赛BO2 第一场 8.16
2018/08/17 DOTA
Python爬虫模拟登录带验证码网站
2016/01/22 Python
Python字符串拼接、截取及替换方法总结分析
2016/04/13 Python
python3 tkinter实现添加图片和文本
2019/11/26 Python
Python中logging日志的四个等级和使用
2020/11/17 Python
python 实现百度网盘非会员上传超过500个文件的方法
2021/01/07 Python
JVM是一个编译程序还是解释程序
2012/09/11 面试题
抽奖活动主持词
2014/03/31 职场文书
升旗仪式演讲稿
2014/05/08 职场文书
设计专业毕业生求职信
2014/06/25 职场文书
管理人员岗位职责
2015/02/14 职场文书
岗位职责范本大全
2015/02/26 职场文书
关爱空巢老人感想
2015/08/11 职场文书
2016校本研修培训心得体会
2016/01/08 职场文书