Python first-order-model实现让照片动起来


Posted in Python onJune 25, 2022

前言

看到一个很有意思的项目,其实在之前就在百度飞浆等平台上看到类似的实现效果。

可以将照片按照视频的表情,动起来。看一下项目给出的效果。

Python first-order-model实现让照片动起来

项目地址:first-order-model项目地址

还是老样子,不管作者给出的种种效果,自己测试一下。

资源下载和安装

我们先看一下README关于项目的基本信息,可以看出除了表情驱动照片,还可以姿态迁移。

Python first-order-model实现让照片动起来

Python first-order-model实现让照片动起来

模型文件提供了线上的下载地址。

Python first-order-model实现让照片动起来

文件很大而且难下,我下好了放到我的云盘上,可以从下面云盘下载。

链接 提取码:ikix

模型文件放到根目录下新建的checkpoint文件夹下。

Python first-order-model实现让照片动起来

Python first-order-model实现让照片动起来

将requirements.txt中的依赖安装一下。

Python first-order-model实现让照片动起来

安装补充 

在测试README中的命令的时候,如果出现一下报错。

Traceback (most recent call last):
  File "demo.py", line 17, in <module>
    from animate import normalize_kp
  File "D:\spyder\first-order-model\animate.py", line 7, in <module>
    from frames_dataset import PairedDataset
  File "D:\spyder\first-order-model\frames_dataset.py", line 10, in <module>
    from augmentation import AllAugmentationTransform
  File "D:\spyder\first-order-model\augmentation.py", line 13, in <module>
    import torchvision
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\__init__.py", line 2, in <module>
    from torchvision import datasets
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\datasets\__init__.py", line 9, in <module>
    from .fakedata import FakeData
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\datasets\fakedata.py", line 3, in <module>
    from .. import transforms
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\__init__.py", line 1, in <module>
    from .transforms import *
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\transforms.py", line 16, in <module>
    from . import functional as F
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\functional.py", line 5, in <module>
    from PIL import Image, ImageOps, ImageEnhance, PILLOW_VERSION
ImportError: cannot import name 'PILLOW_VERSION' from 'PIL' (C:\Users\huyi\.conda\envs\fom\lib\site-packages\PIL\__init__.py)

这个问题主要是我使用的pillow版本过高的原因,如果不想找对应的低版本,可以按照我的方式解决。 

1、修改functional.py代码,将PILLOW_VERSION调整为__version__。

Python first-order-model实现让照片动起来

2、将imageio升级。

pip install --upgrade imageio -i https://pypi.douban.com/simple

3、安装imageio_ffmpeg模块。

pip install imageio-ffmpeg -i https://pypi.douban.com/simple

工具代码验证

官方给出的使用方法我就不重复测试,大家可以按照下面的命令去测试一下。

Python first-order-model实现让照片动起来

这里我推荐一个可视化的库gradio,下面我将demo.py的代码改造了一下。

新的工具文件代码如下:

#!/user/bin/env python
# coding=utf-8
"""
@project : first-order-model
@author  : 剑客阿良_ALiang
@file   : hy_gradio.py
@ide    : PyCharm
@time   : 2022-06-23 14:35:28
"""
import uuid
from typing import Optional
 
import gradio as gr
import matplotlib
 
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from tqdm import tqdm
 
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from sync_batchnorm import DataParallelWithCallback
 
from modules.generator import OcclusionAwareGenerator
from modules.keypoint_detector import KPDetector
from animate import normalize_kp
from scipy.spatial import ConvexHull
 
if sys.version_info[0] < 3:
    raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
 
 
def load_checkpoints(config_path, checkpoint_path, cpu=False):
    with open(config_path) as f:
        config = yaml.load(f)
 
    generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
                                        **config['model_params']['common_params'])
    if not cpu:
        generator.cuda()
 
    kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
                             **config['model_params']['common_params'])
    if not cpu:
        kp_detector.cuda()
 
    if cpu:
        checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
    else:
        checkpoint = torch.load(checkpoint_path)
 
    generator.load_state_dict(checkpoint['generator'])
    kp_detector.load_state_dict(checkpoint['kp_detector'])
 
    if not cpu:
        generator = DataParallelWithCallback(generator)
        kp_detector = DataParallelWithCallback(kp_detector)
 
    generator.eval()
    kp_detector.eval()
 
    return generator, kp_detector
 
 
def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True,
                   cpu=False):
    with torch.no_grad():
        predictions = []
        source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
        if not cpu:
            source = source.cuda()
        driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
        kp_source = kp_detector(source)
        kp_driving_initial = kp_detector(driving[:, :, 0])
 
        for frame_idx in tqdm(range(driving.shape[2])):
            driving_frame = driving[:, :, frame_idx]
            if not cpu:
                driving_frame = driving_frame.cuda()
            kp_driving = kp_detector(driving_frame)
            kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
                                   kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
                                   use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
            out = generator(source, kp_source=kp_source, kp_driving=kp_norm)
 
            predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
    return predictions
 
 
def find_best_frame(source, driving, cpu=False):
    import face_alignment
 
    def normalize_kp(kp):
        kp = kp - kp.mean(axis=0, keepdims=True)
        area = ConvexHull(kp[:, :2]).volume
        area = np.sqrt(area)
        kp[:, :2] = kp[:, :2] / area
        return kp
 
    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
                                      device='cpu' if cpu else 'cuda')
    kp_source = fa.get_landmarks(255 * source)[0]
    kp_source = normalize_kp(kp_source)
    norm = float('inf')
    frame_num = 0
    for i, image in tqdm(enumerate(driving)):
        kp_driving = fa.get_landmarks(255 * image)[0]
        kp_driving = normalize_kp(kp_driving)
        new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
        if new_norm < norm:
            norm = new_norm
            frame_num = i
    return frame_num
 
 
def h_interface(input_image: str):
    parser = ArgumentParser()
    opt = parser.parse_args()
    opt.config = "./config/vox-256.yaml"
    opt.checkpoint = "./checkpoint/vox-cpk.pth.tar"
    opt.source_image = input_image
    opt.driving_video = "./data/input/ts.mp4"
    opt.result_video = "./data/result/{}.mp4".format(uuid.uuid1().hex)
    opt.relative = True
    opt.adapt_scale = True
    opt.cpu = True
    opt.find_best_frame = False
    opt.best_frame = False
    # source_image = imageio.imread(opt.source_image)
    source_image = opt.source_image
    reader = imageio.get_reader(opt.driving_video)
    fps = reader.get_meta_data()['fps']
    driving_video = []
    try:
        for im in reader:
            driving_video.append(im)
    except RuntimeError:
        pass
    reader.close()
 
    source_image = resize(source_image, (256, 256))[..., :3]
    driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
    generator, kp_detector = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint, cpu=opt.cpu)
 
    if opt.find_best_frame or opt.best_frame is not None:
        i = opt.best_frame if opt.best_frame is not None else find_best_frame(source_image, driving_video, cpu=opt.cpu)
        print("Best frame: " + str(i))
        driving_forward = driving_video[i:]
        driving_backward = driving_video[:(i + 1)][::-1]
        predictions_forward = make_animation(source_image, driving_forward, generator, kp_detector,
                                             relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
        predictions_backward = make_animation(source_image, driving_backward, generator, kp_detector,
                                              relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
        predictions = predictions_backward[::-1] + predictions_forward[1:]
    else:
        predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=opt.relative,
                                     adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
    imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)
    return opt.result_video
 
 
if __name__ == "__main__":
    demo = gr.Interface(h_interface, inputs=[gr.Image(shape=(500, 500))], outputs=[gr.Video()])
 
    demo.launch()
    # h_interface("C:\\Users\\huyi\\Desktop\\xx3.jpg")

代码说明

1、将原demo.py中的main函数内容,重新编辑为h_interface方法,输入是想要驱动的图片。

2、其中driving_video参数使用了我自己录制的一段表情视频ts.mp4,我建议在使用的时候可以自己用手机录制一段替换。

3、使用gradio来生成方法的页面,下面会展示给大家看。

4、使用uuid为结果视频命名。

执行结果如下

Running on local URL:  http://127.0.0.1:7860/
To create a public link, set `share=True` in `launch()`.

打开本地的地址:http://localhost:7860/

可以看到我们实现的交互界面如下:

Python first-order-model实现让照片动起来

我们上传一下我准备的样例图片,提交制作。

Python first-order-model实现让照片动起来

看一下执行的日志,如下图。

Python first-order-model实现让照片动起来

看一下制作结果。

Python first-order-model实现让照片动起来

由于上传不了视频,我将视频转成了gif。

Python first-order-model实现让照片动起来

还是蛮有意思的,具体的参数调优我就不弄了,大家可能根据需要调整我提供的方法里面的参数。

以上就是Python first-order-model实现让照片动起来的详细内容,更多关于Python 照片动起来的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python写的一个squid访问日志分析的小程序
Sep 17 Python
详解Python3中的Sequence type的使用
Aug 01 Python
举例讲解Python中的Null模式与桥接模式编程
Feb 02 Python
浅谈Python处理PDF的方法
Nov 10 Python
python使用json序列化datetime类型实例解析
Feb 11 Python
解决tensorflow测试模型时NotFoundError错误的问题
Jul 26 Python
使用11行Python代码盗取了室友的U盘内容
Oct 23 Python
PyCharm 创建指定版本的 Django(超详图解教程)
Jun 18 Python
Django+uni-app实现数据通信中的请求跨域的示例代码
Oct 12 Python
Python如何将模块打包并发布
Aug 30 Python
Python selenium的这三种等待方式一定要会!
Jun 10 Python
Django对接elasticsearch实现全文检索的示例代码
Aug 02 Python
python热力图实现的完整实例
彻底弄懂Python中的回调函数(callback)
Jun 25 #Python
利用Python实现翻译HTML中的文本字符串
Jun 21 #Python
使用scrapy实现增量式爬取方式
Jun 21 #Python
python+opencv实现目标跟踪过程
Jun 21 #Python
使用opencv-python如何打开USB或者笔记本前置摄像头
Python+DeOldify实现老照片上色功能
You might like
PHP动态图像的创建
2006/10/09 PHP
以文本方式上传二进制文件的PHP程序
2006/10/09 PHP
php实现通用的信用卡验证类
2015/03/24 PHP
php微信浏览器分享设置以及回调详解
2016/08/01 PHP
PHP抽象类基本用法示例
2018/12/28 PHP
Yii框架 session 数据库存储操作方法示例
2019/11/18 PHP
javascript实现的基于金山词霸网络翻译的代码
2010/01/15 Javascript
获取客户端网卡MAC地址和IP地址实现JS代码
2013/03/17 Javascript
杨氏矩阵查找的JS代码
2013/03/21 Javascript
extjs中form与grid交互数据(record)的方法
2013/08/29 Javascript
JavaScript常用字符串与数组扩展函数小结
2016/04/24 Javascript
JS组件Bootstrap Table布局详解
2016/05/27 Javascript
Google 地图类型详解及示例代码
2016/08/06 Javascript
jQuery中fadein与fadeout方法用法示例
2016/09/16 Javascript
js判断手机号是否正确并返回的实现代码
2017/01/17 Javascript
js实现tab切换效果
2017/02/16 Javascript
详谈AngularJs 控制器、数据绑定、作用域
2017/07/09 Javascript
react native带索引的城市列表组件的实例代码
2017/08/08 Javascript
d3.js实现图形拖拽
2019/12/19 Javascript
JavaScript修改注册表实例代码
2020/01/05 Javascript
微信小程序实现打卡签到页面
2020/09/21 Javascript
Python中处理字符串之endswith()方法的使用简介
2015/05/18 Python
深入理解Django中内置的用户认证
2017/10/06 Python
Python数据结构与算法之二叉树结构定义与遍历方法详解
2017/12/12 Python
Python 实现两个列表里元素对应相乘的方法
2018/11/14 Python
Python关于反射的实例代码分享
2020/02/20 Python
Python 如何反方向迭代一个序列
2020/07/28 Python
Python绘图实现台风路径可视化代码实例
2020/10/23 Python
详解Pycharm第三方库的安装及使用方法
2020/12/29 Python
Proenza Schouler官方网站:纽约女装和配饰品牌
2019/01/03 全球购物
党的群众教育实践活动实施方案
2014/06/12 职场文书
学习“七一”讲话精神体会
2014/07/08 职场文书
小学家长通知书评语
2014/12/31 职场文书
离开雷锋的日子观后感
2015/06/09 职场文书
k8s部署redis cluster集群的实现
2021/06/24 Redis
使用Cargo工具高效创建Rust项目
2022/08/14 Javascript