Python first-order-model实现让照片动起来


Posted in Python onJune 25, 2022

前言

看到一个很有意思的项目,其实在之前就在百度飞浆等平台上看到类似的实现效果。

可以将照片按照视频的表情,动起来。看一下项目给出的效果。

Python first-order-model实现让照片动起来

项目地址:first-order-model项目地址

还是老样子,不管作者给出的种种效果,自己测试一下。

资源下载和安装

我们先看一下README关于项目的基本信息,可以看出除了表情驱动照片,还可以姿态迁移。

Python first-order-model实现让照片动起来

Python first-order-model实现让照片动起来

模型文件提供了线上的下载地址。

Python first-order-model实现让照片动起来

文件很大而且难下,我下好了放到我的云盘上,可以从下面云盘下载。

链接 提取码:ikix

模型文件放到根目录下新建的checkpoint文件夹下。

Python first-order-model实现让照片动起来

Python first-order-model实现让照片动起来

将requirements.txt中的依赖安装一下。

Python first-order-model实现让照片动起来

安装补充 

在测试README中的命令的时候,如果出现一下报错。

Traceback (most recent call last):
  File "demo.py", line 17, in <module>
    from animate import normalize_kp
  File "D:\spyder\first-order-model\animate.py", line 7, in <module>
    from frames_dataset import PairedDataset
  File "D:\spyder\first-order-model\frames_dataset.py", line 10, in <module>
    from augmentation import AllAugmentationTransform
  File "D:\spyder\first-order-model\augmentation.py", line 13, in <module>
    import torchvision
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\__init__.py", line 2, in <module>
    from torchvision import datasets
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\datasets\__init__.py", line 9, in <module>
    from .fakedata import FakeData
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\datasets\fakedata.py", line 3, in <module>
    from .. import transforms
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\__init__.py", line 1, in <module>
    from .transforms import *
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\transforms.py", line 16, in <module>
    from . import functional as F
  File "C:\Users\huyi\.conda\envs\fom\lib\site-packages\torchvision\transforms\functional.py", line 5, in <module>
    from PIL import Image, ImageOps, ImageEnhance, PILLOW_VERSION
ImportError: cannot import name 'PILLOW_VERSION' from 'PIL' (C:\Users\huyi\.conda\envs\fom\lib\site-packages\PIL\__init__.py)

这个问题主要是我使用的pillow版本过高的原因,如果不想找对应的低版本,可以按照我的方式解决。 

1、修改functional.py代码,将PILLOW_VERSION调整为__version__。

Python first-order-model实现让照片动起来

2、将imageio升级。

pip install --upgrade imageio -i https://pypi.douban.com/simple

3、安装imageio_ffmpeg模块。

pip install imageio-ffmpeg -i https://pypi.douban.com/simple

工具代码验证

官方给出的使用方法我就不重复测试,大家可以按照下面的命令去测试一下。

Python first-order-model实现让照片动起来

这里我推荐一个可视化的库gradio,下面我将demo.py的代码改造了一下。

新的工具文件代码如下:

#!/user/bin/env python
# coding=utf-8
"""
@project : first-order-model
@author  : 剑客阿良_ALiang
@file   : hy_gradio.py
@ide    : PyCharm
@time   : 2022-06-23 14:35:28
"""
import uuid
from typing import Optional
 
import gradio as gr
import matplotlib
 
matplotlib.use('Agg')
import os, sys
import yaml
from argparse import ArgumentParser
from tqdm import tqdm
 
import imageio
import numpy as np
from skimage.transform import resize
from skimage import img_as_ubyte
import torch
from sync_batchnorm import DataParallelWithCallback
 
from modules.generator import OcclusionAwareGenerator
from modules.keypoint_detector import KPDetector
from animate import normalize_kp
from scipy.spatial import ConvexHull
 
if sys.version_info[0] < 3:
    raise Exception("You must use Python 3 or higher. Recommended version is Python 3.7")
 
 
def load_checkpoints(config_path, checkpoint_path, cpu=False):
    with open(config_path) as f:
        config = yaml.load(f)
 
    generator = OcclusionAwareGenerator(**config['model_params']['generator_params'],
                                        **config['model_params']['common_params'])
    if not cpu:
        generator.cuda()
 
    kp_detector = KPDetector(**config['model_params']['kp_detector_params'],
                             **config['model_params']['common_params'])
    if not cpu:
        kp_detector.cuda()
 
    if cpu:
        checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
    else:
        checkpoint = torch.load(checkpoint_path)
 
    generator.load_state_dict(checkpoint['generator'])
    kp_detector.load_state_dict(checkpoint['kp_detector'])
 
    if not cpu:
        generator = DataParallelWithCallback(generator)
        kp_detector = DataParallelWithCallback(kp_detector)
 
    generator.eval()
    kp_detector.eval()
 
    return generator, kp_detector
 
 
def make_animation(source_image, driving_video, generator, kp_detector, relative=True, adapt_movement_scale=True,
                   cpu=False):
    with torch.no_grad():
        predictions = []
        source = torch.tensor(source_image[np.newaxis].astype(np.float32)).permute(0, 3, 1, 2)
        if not cpu:
            source = source.cuda()
        driving = torch.tensor(np.array(driving_video)[np.newaxis].astype(np.float32)).permute(0, 4, 1, 2, 3)
        kp_source = kp_detector(source)
        kp_driving_initial = kp_detector(driving[:, :, 0])
 
        for frame_idx in tqdm(range(driving.shape[2])):
            driving_frame = driving[:, :, frame_idx]
            if not cpu:
                driving_frame = driving_frame.cuda()
            kp_driving = kp_detector(driving_frame)
            kp_norm = normalize_kp(kp_source=kp_source, kp_driving=kp_driving,
                                   kp_driving_initial=kp_driving_initial, use_relative_movement=relative,
                                   use_relative_jacobian=relative, adapt_movement_scale=adapt_movement_scale)
            out = generator(source, kp_source=kp_source, kp_driving=kp_norm)
 
            predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
    return predictions
 
 
def find_best_frame(source, driving, cpu=False):
    import face_alignment
 
    def normalize_kp(kp):
        kp = kp - kp.mean(axis=0, keepdims=True)
        area = ConvexHull(kp[:, :2]).volume
        area = np.sqrt(area)
        kp[:, :2] = kp[:, :2] / area
        return kp
 
    fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True,
                                      device='cpu' if cpu else 'cuda')
    kp_source = fa.get_landmarks(255 * source)[0]
    kp_source = normalize_kp(kp_source)
    norm = float('inf')
    frame_num = 0
    for i, image in tqdm(enumerate(driving)):
        kp_driving = fa.get_landmarks(255 * image)[0]
        kp_driving = normalize_kp(kp_driving)
        new_norm = (np.abs(kp_source - kp_driving) ** 2).sum()
        if new_norm < norm:
            norm = new_norm
            frame_num = i
    return frame_num
 
 
def h_interface(input_image: str):
    parser = ArgumentParser()
    opt = parser.parse_args()
    opt.config = "./config/vox-256.yaml"
    opt.checkpoint = "./checkpoint/vox-cpk.pth.tar"
    opt.source_image = input_image
    opt.driving_video = "./data/input/ts.mp4"
    opt.result_video = "./data/result/{}.mp4".format(uuid.uuid1().hex)
    opt.relative = True
    opt.adapt_scale = True
    opt.cpu = True
    opt.find_best_frame = False
    opt.best_frame = False
    # source_image = imageio.imread(opt.source_image)
    source_image = opt.source_image
    reader = imageio.get_reader(opt.driving_video)
    fps = reader.get_meta_data()['fps']
    driving_video = []
    try:
        for im in reader:
            driving_video.append(im)
    except RuntimeError:
        pass
    reader.close()
 
    source_image = resize(source_image, (256, 256))[..., :3]
    driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video]
    generator, kp_detector = load_checkpoints(config_path=opt.config, checkpoint_path=opt.checkpoint, cpu=opt.cpu)
 
    if opt.find_best_frame or opt.best_frame is not None:
        i = opt.best_frame if opt.best_frame is not None else find_best_frame(source_image, driving_video, cpu=opt.cpu)
        print("Best frame: " + str(i))
        driving_forward = driving_video[i:]
        driving_backward = driving_video[:(i + 1)][::-1]
        predictions_forward = make_animation(source_image, driving_forward, generator, kp_detector,
                                             relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
        predictions_backward = make_animation(source_image, driving_backward, generator, kp_detector,
                                              relative=opt.relative, adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
        predictions = predictions_backward[::-1] + predictions_forward[1:]
    else:
        predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=opt.relative,
                                     adapt_movement_scale=opt.adapt_scale, cpu=opt.cpu)
    imageio.mimsave(opt.result_video, [img_as_ubyte(frame) for frame in predictions], fps=fps)
    return opt.result_video
 
 
if __name__ == "__main__":
    demo = gr.Interface(h_interface, inputs=[gr.Image(shape=(500, 500))], outputs=[gr.Video()])
 
    demo.launch()
    # h_interface("C:\\Users\\huyi\\Desktop\\xx3.jpg")

代码说明

1、将原demo.py中的main函数内容,重新编辑为h_interface方法,输入是想要驱动的图片。

2、其中driving_video参数使用了我自己录制的一段表情视频ts.mp4,我建议在使用的时候可以自己用手机录制一段替换。

3、使用gradio来生成方法的页面,下面会展示给大家看。

4、使用uuid为结果视频命名。

执行结果如下

Running on local URL:  http://127.0.0.1:7860/
To create a public link, set `share=True` in `launch()`.

打开本地的地址:http://localhost:7860/

可以看到我们实现的交互界面如下:

Python first-order-model实现让照片动起来

我们上传一下我准备的样例图片,提交制作。

Python first-order-model实现让照片动起来

看一下执行的日志,如下图。

Python first-order-model实现让照片动起来

看一下制作结果。

Python first-order-model实现让照片动起来

由于上传不了视频,我将视频转成了gif。

Python first-order-model实现让照片动起来

还是蛮有意思的,具体的参数调优我就不弄了,大家可能根据需要调整我提供的方法里面的参数。

以上就是Python first-order-model实现让照片动起来的详细内容,更多关于Python 照片动起来的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python 面向对象 成员的访问约束
Dec 23 Python
一键搞定python连接mysql驱动有关问题(windows版本)
Apr 23 Python
python numpy 一维数组转变为多维数组的实例
Jul 02 Python
Python实现SQL注入检测插件实例代码
Feb 02 Python
决策树剪枝算法的python实现方法详解
Sep 18 Python
Python TCPServer 多线程多客户端通信的实现
Dec 31 Python
python with (as)语句实例详解
Feb 04 Python
Django 多对多字段的更新和插入数据实例
Mar 31 Python
解决paramiko执行命令超时的问题
Apr 16 Python
Python:__eq__和__str__函数的使用示例
Sep 26 Python
Python数据可视化常用4大绘图库原理详解
Oct 23 Python
Python基于百度API识别并提取图片中文字
Jun 27 Python
python热力图实现的完整实例
彻底弄懂Python中的回调函数(callback)
Jun 25 #Python
利用Python实现翻译HTML中的文本字符串
Jun 21 #Python
使用scrapy实现增量式爬取方式
Jun 21 #Python
python+opencv实现目标跟踪过程
Jun 21 #Python
使用opencv-python如何打开USB或者笔记本前置摄像头
Python+DeOldify实现老照片上色功能
You might like
php中base64_decode与base64_encode加密解密函数实例
2014/11/24 PHP
PHP使用CURL实现多线程抓取网页
2015/04/30 PHP
微信公众号开发之获取位置信息php代码
2018/06/13 PHP
jquery实现图片随机排列的方法
2015/05/04 Javascript
详解用原生JavaScript实现jQuery的某些简单功能
2016/12/19 Javascript
js实现导航吸顶效果
2017/02/24 Javascript
原生JS实现圆环拖拽效果
2017/04/07 Javascript
完美实现js拖拽效果 return false用法详解
2017/07/28 Javascript
vue 动态修改a标签的样式的方法
2018/01/18 Javascript
对angularJs中2种自定义服务的实例讲解
2018/09/30 Javascript
前端开发之便利店收银系统代码
2019/12/27 Javascript
vue2路由方式--嵌套路由实现方法分析
2020/03/06 Javascript
javascript实现电商放大镜效果
2020/11/23 Javascript
深入了解Vue动态组件和异步组件
2021/01/26 Vue.js
Python常用正则表达式符号浅析
2014/08/13 Python
在Django框架中设置语言偏好的教程
2015/07/27 Python
Python通过future处理并发问题
2017/10/17 Python
python数据封装json格式数据
2018/03/04 Python
TensorFlow 滑动平均的示例代码
2018/06/19 Python
python爬虫实例详解
2018/06/19 Python
Python内置random模块生成随机数的方法
2019/05/31 Python
使用Python画股票的K线图的方法步骤
2019/06/28 Python
python日志模块logbook使用方法
2019/09/19 Python
python如何删除文件、目录
2020/06/23 Python
20行Python代码实现一款永久免费PDF编辑工具的实现
2020/08/27 Python
pycharm2020.1.2永久破解激活教程,实测有效
2020/10/29 Python
Python datetime模块的使用示例
2021/02/02 Python
CSS3中的transform属性进行2D和3D变换的基本用法
2016/05/12 HTML / CSS
CSS3实现复选框动画特效示例代码
2016/09/27 HTML / CSS
C有"按引用传递"吗
2016/09/06 面试题
社区活动总结报告
2014/05/05 职场文书
党员干部廉洁自律承诺书
2015/04/28 职场文书
超搞笑婚前保证书
2015/05/08 职场文书
运动会通讯稿200字
2015/07/20 职场文书
关于JS中的作用域中的问题思考分享
2022/04/06 Javascript
Redis特殊数据类型bitmap位图
2022/06/01 Redis