python+opencv实现目标跟踪过程


Posted in Python onJune 21, 2022

python opencv实现目标跟踪

python-opencv3.0新增了一些比较有用的追踪器算法

这里根据官网示例写了一个追踪器类

程序只能运行在安装有opencv3.0以上版本和对应的contrib模块的python解释器

#encoding=utf-8
 
import cv2
from items import MessageItem
import time
import numpy as np
'''
监视者模块,负责入侵检测,目标跟踪
'''
class WatchDog(object):
  #入侵检测者模块,用于入侵检测
    def __init__(self,frame=None):
        #运动检测器构造函数
        self._background = None
        if frame is not None:
            self._background = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
        self.es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
    def isWorking(self):
        #运动检测器是否工作
        return self._background is not None
    def startWorking(self,frame):
        #运动检测器开始工作
        if frame is not None:
            self._background = cv2.GaussianBlur(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), (21, 21), 0)
    def stopWorking(self):
        #运动检测器结束工作
        self._background = None
    def analyze(self,frame):
        #运动检测
        if frame is None or self._background is None:
            return
        sample_frame = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
        diff = cv2.absdiff(self._background,sample_frame)
        diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]
        diff = cv2.dilate(diff, self.es, iterations=2)
        image, cnts, hierarchy = cv2.findContours(diff.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        coordinate = []
        bigC = None
        bigMulti = 0
        for c in cnts:
            if cv2.contourArea(c) < 1500:
                continue
            (x,y,w,h) = cv2.boundingRect(c)
            if w * h > bigMulti:
                bigMulti = w * h
                bigC = ((x,y),(x+w,y+h))
        if bigC:
            cv2.rectangle(frame, bigC[0],bigC[1], (255,0,0), 2, 1)
        coordinate.append(bigC)
        message = {"coord":coordinate}
        message['msg'] = None
        return MessageItem(frame,message)
 
class Tracker(object):
    '''
    追踪者模块,用于追踪指定目标
    '''
    def __init__(self,tracker_type = "BOOSTING",draw_coord = True):
        '''
        初始化追踪器种类
        '''
        #获得opencv版本
        (major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
        self.tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
        self.tracker_type = tracker_type
        self.isWorking = False
        self.draw_coord = draw_coord
        #构造追踪器
        if int(minor_ver) < 3:
            self.tracker = cv2.Tracker_create(tracker_type)
        else:
            if tracker_type == 'BOOSTING':
                self.tracker = cv2.TrackerBoosting_create()
            if tracker_type == 'MIL':
                self.tracker = cv2.TrackerMIL_create()
            if tracker_type == 'KCF':
                self.tracker = cv2.TrackerKCF_create()
            if tracker_type == 'TLD':
                self.tracker = cv2.TrackerTLD_create()
            if tracker_type == 'MEDIANFLOW':
                self.tracker = cv2.TrackerMedianFlow_create()
            if tracker_type == 'GOTURN':
                self.tracker = cv2.TrackerGOTURN_create()
    def initWorking(self,frame,box):
        '''
        追踪器工作初始化
        frame:初始化追踪画面
        box:追踪的区域
        '''
        if not self.tracker:
            raise Exception("追踪器未初始化")
        status = self.tracker.init(frame,box)
        if not status:
            raise Exception("追踪器工作初始化失败")
        self.coord = box
        self.isWorking = True
 
    def track(self,frame):
        '''
        开启追踪
        '''
        message = None
        if self.isWorking:
            status,self.coord = self.tracker.update(frame)
            if status:
                message = {"coord":[((int(self.coord[0]), int(self.coord[1])),(int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3])))]}
                if self.draw_coord:
                    p1 = (int(self.coord[0]), int(self.coord[1]))
                    p2 = (int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3]))
                    cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
                    message['msg'] = "is tracking"
        return MessageItem(frame,message)
 
class ObjectTracker(object):
    def __init__(self,dataSet):
        self.cascade = cv2.CascadeClassifier(dataSet)
    def track(self,frame):
        gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
        faces = self.cascade.detectMultiScale(gray,1.03,5)
        for (x,y,w,h) in faces:
            cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
        return frame
 
if __name__ == '__main__' :
    a = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
    tracker = Tracker(tracker_type="KCF")
    video = cv2.VideoCapture(0)
    ok, frame = video.read()
    bbox = cv2.selectROI(frame, False)
    tracker.initWorking(frame,bbox)
    while True:
        _,frame = video.read();
        if(_):
            item = tracker.track(frame);
            cv2.imshow("track",item.getFrame())
            k = cv2.waitKey(1) & 0xff
            if k == 27:
                break
#encoding=utf-8
import json
from utils import IOUtil
'''
信息封装类
'''
class MessageItem(object):
    #用于封装信息的类,包含图片和其他信息
    def __init__(self,frame,message):
        self._frame = frame
        self._message = message
    def getFrame(self):
        #图片信息
        return self._frame
    def getMessage(self):
        #文字信息,json格式
        return self._message
    def getBase64Frame(self):
        #返回base64格式的图片,将BGR图像转化为RGB图像
        jepg = IOUtil.array_to_bytes(self._frame[...,::-1])
        return IOUtil.bytes_to_base64(jepg)
    def getBase64FrameByte(self):
        #返回base64格式图片的bytes
        return bytes(self.getBase64Frame())
    def getJson(self):
        #获得json数据格式
        dicdata = {"frame":self.getBase64Frame().decode(),"message":self.getMessage()}
        return json.dumps(dicdata)
    def getBinaryFrame(self):
        return IOUtil.array_to_bytes(self._frame[...,::-1])

运行之后在第一帧图像上选择要追踪的部分,这里测试了一下使用KCF算法的追踪器

python+opencv实现目标跟踪过程

更新:忘记放utils,给大家造成的困扰深表歉意

#encoding=utf-8
import time
import numpy
import base64
import os
import logging
import sys
from settings import *
from PIL import Image
from io import BytesIO
 
#工具类
class IOUtil(object):
    #流操作工具类
    @staticmethod
    def array_to_bytes(pic,formatter="jpeg",quality=70):
        '''
        静态方法,将numpy数组转化二进制流
        :param pic: numpy数组
        :param format: 图片格式
        :param quality:压缩比,压缩比越高,产生的二进制数据越短
        :return: 
        '''
        stream = BytesIO()
        picture = Image.fromarray(pic)
        picture.save(stream,format=formatter,quality=quality)
        jepg = stream.getvalue()
        stream.close()
        return jepg
    @staticmethod
    def bytes_to_base64(byte):
        '''
        静态方法,bytes转base64编码
        :param byte: 
        :return: 
        '''
        return base64.b64encode(byte)
    @staticmethod
    def transport_rgb(frame):
        '''
        将bgr图像转化为rgb图像,或者将rgb图像转化为bgr图像
        '''
        return frame[...,::-1]
    @staticmethod
    def byte_to_package(bytes,cmd,var=1):
        '''
        将每一帧的图片流的二进制数据进行分包
        :param byte: 二进制文件
        :param cmd:命令
        :return: 
        '''
        head = [ver,len(byte),cmd]
        headPack = struct.pack("!3I", *head)
        senddata = headPack+byte
        return senddata
    @staticmethod
    def mkdir(filePath):
        '''
        创建文件夹
        '''
        if not os.path.exists(filePath):
            os.mkdir(filePath)
    @staticmethod
    def countCenter(box):
        '''
        计算一个矩形的中心
        '''
        return (int(abs(box[0][0] - box[1][0])*0.5) + box[0][0],int(abs(box[0][1] - box[1][1])*0.5) +box[0][1])
    @staticmethod
    def countBox(center):
        '''
        根据两个点计算出,x,y,c,r
        '''
        return (center[0][0],center[0][1],center[1][0]-center[0][0],center[1][1]-center[0][1])
    @staticmethod
    def getImageFileName():
        return time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())+'.png'
 
#构造日志
logger = logging.getLogger(LOG_NAME)
formatter = logging.Formatter(LOG_FORMATTER)
IOUtil.mkdir(LOG_DIR);
file_handler = logging.FileHandler(LOG_DIR + LOG_FILE,encoding='utf-8')
file_handler.setFormatter(formatter)
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持三水点靠木。


Tags in this post...

Python 相关文章推荐
Python中返回字典键的值的values()方法使用
May 22 Python
python实现飞机大战微信小游戏
Mar 21 Python
python读取文本中的坐标方法
Oct 14 Python
pycharm 配置远程解释器的方法
Oct 28 Python
Python3爬虫教程之利用Python实现发送天气预报邮件
Dec 16 Python
python远程调用rpc模块xmlrpclib的方法
Jan 11 Python
Python多进程写入同一文件的方法
Jan 14 Python
Python实现通过解析域名获取ip地址的方法分析
May 17 Python
Python + Flask 实现简单的验证码系统
Oct 01 Python
python基于celery实现异步任务周期任务定时任务
Dec 30 Python
win10系统下python3安装及pip换源和使用教程
Jan 06 Python
使用pandas读取表格数据并进行单行数据拼接的详细教程
Mar 03 Python
使用opencv-python如何打开USB或者笔记本前置摄像头
Python+DeOldify实现老照片上色功能
Python使用Opencv打开笔记本电脑摄像头报错解问题及解决
Jun 21 #Python
virtualenv隔离Python环境的问题解析
Jun 21 #Python
pd.drop_duplicates删除重复行的方法实现
Jun 16 #Python
使用pd.merge表连接出现多余行的问题解决
Jun 16 #Python
pd.DataFrame中的几种索引变换的实现
You might like
重新认识php array_merge函数
2014/08/31 PHP
PHP连接access数据库
2015/03/27 PHP
PHP+Apache+Mysql环境搭建教程
2016/08/01 PHP
php及codeigniter使用session-cookie的方法(详解)
2017/04/06 PHP
基于Jquery的文字自动截取(提供源代码)
2011/08/09 Javascript
JS+CSS实现的拖动分页效果实例
2015/05/11 Javascript
javaScript 事件绑定、事件冒泡、事件捕获和事件执行顺序整理总结
2016/10/10 Javascript
基于bootstrap的文件上传控件bootstrap fileinput
2016/12/23 Javascript
Base64(二进制)图片编码解析及在各种浏览器的兼容性处理
2017/02/09 Javascript
js实现可以点击收缩或张开的悬浮窗
2017/09/18 Javascript
webpack构建换肤功能的思路详解
2017/11/27 Javascript
详解Webpack多环境代码打包的方法
2018/08/03 Javascript
微信小程序通过一个json实现分享朋友圈图片
2019/09/03 Javascript
原生js实现随机点名功能
2019/11/05 Javascript
javascript 易错知识点实例小结
2020/04/25 Javascript
react使用CSS实现react动画功能示例
2020/05/18 Javascript
你不知道的SpringBoot与Vue部署解决方案
2020/11/09 Javascript
python实现批量转换文件编码(批转换编码示例)
2014/01/23 Python
python实现根据用户输入从电影网站获取影片信息的方法
2015/04/07 Python
Python的几个高级语法概念浅析(lambda表达式闭包装饰器)
2016/05/28 Python
Python列表和元组的定义与使用操作示例
2017/07/26 Python
Python将多份excel表格整理成一份表格
2018/01/03 Python
Python实现购物车购物小程序
2018/04/18 Python
pytorch 自定义数据集加载方法
2019/08/18 Python
简单了解python装饰器原理及使用方法
2019/12/18 Python
python实现的分层随机抽样案例
2020/02/25 Python
苹果香港官方商城:Apple香港
2016/09/14 全球购物
数控技术应届生求职信
2013/11/13 职场文书
资金主管岗位职责范本
2014/03/04 职场文书
开学典礼决心书
2014/03/11 职场文书
课程改革实施方案
2014/03/16 职场文书
酒店总经理岗位职责
2014/03/17 职场文书
《分数乘法》教学反思
2016/02/24 职场文书
Nginx解决403 forbidden的完整步骤
2021/04/01 Servers
golang中字符串MD5生成方式总结
2021/07/04 Golang
一篇文章弄清楚Ajax请求的五个步骤
2022/03/17 Javascript