Python+Tensorflow+CNN实现车牌识别的示例代码


Posted in Python onOctober 11, 2019

一、项目概述

本次项目目标是实现对自动生成的带有各种噪声的车牌识别。在噪声干扰情况下,车牌字符分割较困难,此次车牌识别是将车牌7个字符同时训练,字符包括31个省份简称、10个阿拉伯数字、24个英文字母('O'和'I'除外),共有65个类别,7个字符使用单独的loss函数进行训练。
(运行环境:tensorflow1.14.0-GPU版)

二、生成车牌数据集

import os
import cv2 as cv
import numpy as np
from math import *
from PIL import ImageFont
from PIL import Image
from PIL import ImageDraw


index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9,
       "苏": 10, "浙": 11, "皖": 12, "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19,
       "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29,
       "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, "6": 37, "7": 38, "8": 39,
       "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, "J": 49,
       "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59,
       "V": 60, "W": 61, "X": 62, "Y": 63, "Z": 64}

chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑",
       "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤",
       "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
       "新", "0", "1", "2", "3", "4", "5", "6", "7", "8",
       "9", "A", "B", "C", "D", "E", "F", "G", "H", "J",
       "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U",
       "V", "W", "X", "Y", "Z"]


def AddSmudginess(img, Smu):
  """
  模糊处理
  :param img: 输入图像
  :param Smu: 模糊图像
  :return: 添加模糊后的图像
  """
  rows = r(Smu.shape[0] - 50)
  cols = r(Smu.shape[1] - 50)
  adder = Smu[rows:rows + 50, cols:cols + 50]
  adder = cv.resize(adder, (50, 50))
  img = cv.resize(img,(50,50))
  img = cv.bitwise_not(img)
  img = cv.bitwise_and(adder, img)
  img = cv.bitwise_not(img)
  return img


def rot(img, angel, shape, max_angel):
  """
  添加透视畸变
  """
  size_o = [shape[1], shape[0]]
  size = (shape[1]+ int(shape[0] * cos((float(max_angel ) / 180) * 3.14)), shape[0])
  interval = abs(int(sin((float(angel) / 180) * 3.14) * shape[0]))
  pts1 = np.float32([[0, 0], [0, size_o[1]], [size_o[0], 0], [size_o[0], size_o[1]]])
  if angel > 0:
    pts2 = np.float32([[interval, 0], [0, size[1]], [size[0], 0], [size[0] - interval, size_o[1]]])
  else:
    pts2 = np.float32([[0, 0], [interval, size[1]], [size[0] - interval, 0], [size[0], size_o[1]]])
  M = cv.getPerspectiveTransform(pts1, pts2)
  dst = cv.warpPerspective(img, M, size)
  return dst


def rotRandrom(img, factor, size):
  """
  添加放射畸变
  :param img: 输入图像
  :param factor: 畸变的参数
  :param size: 图片目标尺寸
  :return: 放射畸变后的图像
  """
  shape = size
  pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]])
  pts2 = np.float32([[r(factor), r(factor)], [r(factor), shape[0] - r(factor)], [shape[1] - r(factor), r(factor)],
            [shape[1] - r(factor), shape[0] - r(factor)]])
  M = cv.getPerspectiveTransform(pts1, pts2)
  dst = cv.warpPerspective(img, M, size)
  return dst


def tfactor(img):
  """
  添加饱和度光照的噪声
  """
  hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV)
  hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + np.random.random() * 0.2)
  hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + np.random.random() * 0.7)
  hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + np.random.random() * 0.8)
  img = cv.cvtColor(hsv, cv.COLOR_HSV2BGR)
  return img


def random_envirment(img, noplate_bg):
  """
  添加自然环境的噪声, noplate_bg为不含车牌的背景图
  """
  bg_index = r(len(noplate_bg))
  env = cv.imread(noplate_bg[bg_index])
  env = cv.resize(env, (img.shape[1], img.shape[0]))
  bak = (img == 0)
  bak = bak.astype(np.uint8) * 255
  inv = cv.bitwise_and(bak, env)
  img = cv.bitwise_or(inv, img)
  return img

 
def GenCh(f, val):
  """
  生成中文字符
  """
  img = Image.new("RGB", (45, 70), (255, 255, 255))
  draw = ImageDraw.Draw(img)
  draw.text((0, 3), val, (0, 0, 0), font=f)
  img = img.resize((23, 70))
  A = np.array(img)
  return A


def GenCh1(f, val):
  """
  生成英文字符
  """
  img =Image.new("RGB", (23, 70), (255, 255, 255))
  draw = ImageDraw.Draw(img)
  draw.text((0, 2), val, (0, 0, 0), font=f)  # val.decode('utf-8')
  A = np.array(img)
  return A

 
def AddGauss(img, level):
  """
  添加高斯模糊
  """ 
  return cv.blur(img, (level * 2 + 1, level * 2 + 1))


def r(val):
  return int(np.random.random() * val)


def AddNoiseSingleChannel(single):
  """
  添加高斯噪声
  """
  diff = 255 - single.max()
  noise = np.random.normal(0, 1 + r(6), single.shape)
  noise = (noise - noise.min()) / (noise.max() - noise.min())
  noise *= diff
  # noise= noise.astype(np.uint8)
  dst = single + noise
  return dst


def addNoise(img):  # sdev = 0.5,avg=10
  img[:, :, 0] = AddNoiseSingleChannel(img[:, :, 0])
  img[:, :, 1] = AddNoiseSingleChannel(img[:, :, 1])
  img[:, :, 2] = AddNoiseSingleChannel(img[:, :, 2])
  return img
 
 
class GenPlate:
  def __init__(self, fontCh, fontEng, NoPlates):
    self.fontC = ImageFont.truetype(fontCh, 43, 0)
    self.fontE = ImageFont.truetype(fontEng, 60, 0)
    self.img = np.array(Image.new("RGB", (226, 70),(255, 255, 255)))
    self.bg = cv.resize(cv.imread("data\\images\\template.bmp"), (226, 70))  # template.bmp:车牌背景图
    self.smu = cv.imread("data\\images\\smu2.jpg")  # smu2.jpg:模糊图像
    self.noplates_path = []
    for parent, parent_folder, filenames in os.walk(NoPlates):
      for filename in filenames:
        path = parent + "\\" + filename
        self.noplates_path.append(path)
 
  def draw(self, val):
    offset = 2
    self.img[0:70, offset+8:offset+8+23] = GenCh(self.fontC, val[0])
    self.img[0:70, offset+8+23+6:offset+8+23+6+23] = GenCh1(self.fontE, val[1])
    for i in range(5):
      base = offset + 8 + 23 + 6 + 23 + 17 + i * 23 + i * 6
      self.img[0:70, base:base+23] = GenCh1(self.fontE, val[i+2])
    return self.img
  
  def generate(self, text):
    if len(text) == 7:
      fg = self.draw(text)  # decode(encoding="utf-8")
      fg = cv.bitwise_not(fg)
      com = cv.bitwise_or(fg, self.bg)
      com = rot(com, r(60)-30, com.shape,30)
      com = rotRandrom(com, 10, (com.shape[1], com.shape[0]))
      com = tfactor(com)
      com = random_envirment(com, self.noplates_path)
      com = AddGauss(com, 1+r(4))
      com = addNoise(com)
      return com

  @staticmethod
  def genPlateString(pos, val):
    """
	  生成车牌string,存为图片
    生成车牌list,存为label
    """
    plateStr = ""
    plateList=[]
    box = [0, 0, 0, 0, 0, 0, 0]
    if pos != -1:
      box[pos] = 1
    for unit, cpos in zip(box, range(len(box))):
      if unit == 1:
        plateStr += val
        plateList.append(val)
      else:
        if cpos == 0:
          plateStr += chars[r(31)]
          plateList.append(plateStr)
        elif cpos == 1:
          plateStr += chars[41 + r(24)]
          plateList.append(plateStr)
        else:
          plateStr += chars[31 + r(34)]
          plateList.append(plateStr)
    plate = [plateList[0]]
    b = [plateList[i][-1] for i in range(len(plateList))]
    plate.extend(b[1:7])
    return plateStr, plate

  @staticmethod
  def genBatch(batchsize, outputPath, size):
    """
    将生成的车牌图片写入文件夹,对应的label写入label.txt
    :param batchsize: 批次大小
    :param outputPath: 输出图像的保存路径
    :param size: 输出图像的尺寸
    :return: None
    """
    if not os.path.exists(outputPath):
      os.mkdir(outputPath)
    outfile = open('data\\plate\\label.txt', 'w', encoding='utf-8')
    for i in range(batchsize):
      plateStr, plate = G.genPlateString(-1, -1)
      # print(plateStr, plate)
      img = G.generate(plateStr)
      img = cv.resize(img, size)
      cv.imwrite(outputPath + "\\" + str(i).zfill(2) + ".jpg", img)
      outfile.write(str(plate) + "\n")


if __name__ == '__main__':
  G = GenPlate("data\\font\\platech.ttf", 'data\\font\\platechar.ttf', "data\\NoPlates")
  G.genBatch(101, 'data\\plate', (272, 72))

生成的车牌图像尺寸尽量不要超过300,本次尺寸选取:272 * 72

生成车牌所需文件:

  • 字体文件:中文‘platech.ttf',英文及数字‘platechar.ttf'
  • 背景图:来源于不含车牌的车辆裁剪图片
  • 车牌(蓝底):template.bmp
  • 噪声图像:smu2.jpg

车牌生成后保存至plate文件夹,示例如下:

Python+Tensorflow+CNN实现车牌识别的示例代码

三、数据导入

from genplate import *
import matplotlib.pyplot as plt

# 产生用于训练的数据
class OCRIter:
  def __init__(self, batch_size, width, height):
    super(OCRIter, self).__init__()
    self.genplate = GenPlate("data\\font\\platech.ttf", 'data\\font\\platechar.ttf', "data\\NoPlates")
    self.batch_size = batch_size
    self.height = height
    self.width = width

  def iter(self):
    data = []
    label = []
    for i in range(self.batch_size):
      img, num = self.gen_sample(self.genplate, self.width, self.height)
      data.append(img)
      label.append(num)
    return np.array(data), np.array(label)

  @staticmethod
  def rand_range(lo, hi):
    return lo + r(hi - lo)

  def gen_rand(self):
    name = ""
    label = list([])
    label.append(self.rand_range(0, 31))  #产生车牌开头32个省的标签
    label.append(self.rand_range(41, 65))  #产生车牌第二个字母的标签
    for i in range(5):
      label.append(self.rand_range(31, 65))  #产生车牌后续5个字母的标签
    name += chars[label[0]]
    name += chars[label[1]]
    for i in range(5):
      name += chars[label[i+2]]
    return name, label

  def gen_sample(self, genplate, width, height):
    num, label = self.gen_rand()
    img = genplate.generate(num)
    img = cv.resize(img, (height, width))
    img = np.multiply(img, 1/255.0)
    return img, label    #返回的label为标签,img为车牌图像

'''
# 测试代码
O = OCRIter(2, 272, 72)
img, lbl = O.iter()
for im in img:
  plt.imshow(im, cmap='gray')
  plt.show()
print(img.shape)
print(lbl)
'''

四、CNN模型构建

import tensorflow as tf


def cnn_inference(images, keep_prob):
  W_conv = {
    'conv1': tf.Variable(tf.random.truncated_normal([3, 3, 3, 32],
                            stddev=0.1)),
    'conv2': tf.Variable(tf.random.truncated_normal([3, 3, 32, 32],
                            stddev=0.1)),
    'conv3': tf.Variable(tf.random.truncated_normal([3, 3, 32, 64],
                            stddev=0.1)),
    'conv4': tf.Variable(tf.random.truncated_normal([3, 3, 64, 64],
                            stddev=0.1)),
    'conv5': tf.Variable(tf.random.truncated_normal([3, 3, 64, 128],
                            stddev=0.1)),
    'conv6': tf.Variable(tf.random.truncated_normal([3, 3, 128, 128],
                            stddev=0.1)),
    'fc1_1': tf.Variable(tf.random.truncated_normal([5*30*128, 65],
                            stddev=0.01)),
    'fc1_2': tf.Variable(tf.random.truncated_normal([5*30*128, 65],
                            stddev=0.01)),
    'fc1_3': tf.Variable(tf.random.truncated_normal([5*30*128, 65],
                            stddev=0.01)),
    'fc1_4': tf.Variable(tf.random.truncated_normal([5*30*128, 65],
                            stddev=0.01)),
    'fc1_5': tf.Variable(tf.random.truncated_normal([5*30*128, 65],
                            stddev=0.01)),
    'fc1_6': tf.Variable(tf.random.truncated_normal([5*30*128, 65],
                            stddev=0.01)),
    'fc1_7': tf.Variable(tf.random.truncated_normal([5*30*128, 65],
                            stddev=0.01)),
    } 

  b_conv = { 
    'conv1': tf.Variable(tf.constant(0.1, dtype=tf.float32, 
                     shape=[32])),
    'conv2': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[32])),
    'conv3': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[64])),
    'conv4': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[64])),
    'conv5': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[128])),
    'conv6': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[128])),
    'fc1_1': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[65])),
    'fc1_2': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[65])),
    'fc1_3': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[65])),
    'fc1_4': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[65])),
    'fc1_5': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[65])),
    'fc1_6': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[65])),
    'fc1_7': tf.Variable(tf.constant(0.1, dtype=tf.float32,
                     shape=[65])),
    } 


  # 第1层卷积层
  conv1 = tf.nn.conv2d(images, W_conv['conv1'], strides=[1,1,1,1], padding='VALID')
  conv1 = tf.nn.bias_add(conv1, b_conv['conv1'])
  conv1 = tf.nn.relu(conv1)
 
  # 第2层卷积层
  conv2 = tf.nn.conv2d(conv1, W_conv['conv2'], strides=[1,1,1,1], padding='VALID')
  conv2 = tf.nn.bias_add(conv2, b_conv['conv2'])
  conv2 = tf.nn.relu(conv2)
  # 第1层池化层
  pool1 = tf.nn.max_pool2d(conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')
 
  # 第3层卷积层
  conv3 = tf.nn.conv2d(pool1, W_conv['conv3'], strides=[1,1,1,1], padding='VALID')
  conv3 = tf.nn.bias_add(conv3, b_conv['conv3'])
  conv3 = tf.nn.relu(conv3)
 
  # 第4层卷积层
  conv4 = tf.nn.conv2d(conv3, W_conv['conv4'], strides=[1,1,1,1], padding='VALID')
  conv4 = tf.nn.bias_add(conv4, b_conv['conv4'])
  conv4 = tf.nn.relu(conv4)
  # 第2层池化层
  pool2 = tf.nn.max_pool2d(conv4, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')

  # 第5层卷积层
  conv5 = tf.nn.conv2d(pool2, W_conv['conv5'], strides=[1,1,1,1], padding='VALID')
  conv5 = tf.nn.bias_add(conv5, b_conv['conv5'])
  conv5 = tf.nn.relu(conv5)

  # 第4层卷积层
  conv6 = tf.nn.conv2d(conv5, W_conv['conv6'], strides=[1,1,1,1], padding='VALID')
  conv6 = tf.nn.bias_add(conv6, b_conv['conv6'])
  conv6 = tf.nn.relu(conv6)
  # 第3层池化层
  pool3 = tf.nn.max_pool2d(conv6, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID')
 
  #第1_1层全连接层
  # print(pool3.shape)
  reshape = tf.reshape(pool3, [-1, 5 * 30 * 128])
  fc1 = tf.nn.dropout(reshape, keep_prob)
  fc1_1 = tf.add(tf.matmul(fc1, W_conv['fc1_1']), b_conv['fc1_1'])
  
  #第1_2层全连接层
  fc1_2 = tf.add(tf.matmul(fc1, W_conv['fc1_2']), b_conv['fc1_2'])

  #第1_3层全连接层
  fc1_3 = tf.add(tf.matmul(fc1, W_conv['fc1_3']), b_conv['fc1_3'])

  #第1_4层全连接层
  fc1_4 = tf.add(tf.matmul(fc1, W_conv['fc1_4']), b_conv['fc1_4'])
  
  #第1_5层全连接层
  fc1_5 = tf.add(tf.matmul(fc1, W_conv['fc1_5']), b_conv['fc1_5'])
  
  #第1_6层全连接层
  fc1_6 = tf.add(tf.matmul(fc1, W_conv['fc1_6']), b_conv['fc1_6'])
  
  #第1_7层全连接层
  fc1_7 = tf.add(tf.matmul(fc1, W_conv['fc1_7']), b_conv['fc1_7'])
  
  return fc1_1, fc1_2, fc1_3, fc1_4, fc1_5, fc1_6, fc1_7


def calc_loss(logit1, logit2, logit3, logit4, logit5, logit6, logit7, labels):
  labels = tf.convert_to_tensor(labels, tf.int32)
  
  loss1 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=logit1, labels=labels[:, 0]))
  tf.compat.v1.summary.scalar('loss1', loss1)

  loss2 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=logit2, labels=labels[:, 1]))
  tf.compat.v1.summary.scalar('loss2', loss2)

  loss3 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=logit3, labels=labels[:, 2]))
  tf.compat.v1.summary.scalar('loss3', loss3)

  loss4 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=logit4, labels=labels[:, 3]))
  tf.compat.v1.summary.scalar('loss4', loss4)

  loss5 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=logit5, labels=labels[:, 4]))
  tf.compat.v1.summary.scalar('loss5', loss5)

  loss6 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=logit6, labels=labels[:, 5]))
  tf.compat.v1.summary.scalar('loss6', loss6)

  loss7 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(
    logits=logit7, labels=labels[:, 6]))
  tf.compat.v1.summary.scalar('loss7', loss7)

  return loss1, loss2, loss3, loss4, loss5, loss6, loss7


def train_step(loss1, loss2, loss3, loss4, loss5, loss6, loss7, learning_rate):
  optimizer1 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
  train_op1 = optimizer1.minimize(loss1)

  optimizer2 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
  train_op2 = optimizer2.minimize(loss2)

  optimizer3 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
  train_op3 = optimizer3.minimize(loss3)

  optimizer4 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
  train_op4 = optimizer4.minimize(loss4)

  optimizer5 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
  train_op5 = optimizer5.minimize(loss5)

  optimizer6 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
  train_op6 = optimizer6.minimize(loss6)

  optimizer7 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate)
  train_op7 = optimizer7.minimize(loss7)

  return train_op1, train_op2, train_op3, train_op4, train_op5, train_op6, train_op7
  

def pred_model(logit1, logit2, logit3, logit4, logit5, logit6, logit7, labels):
  labels = tf.convert_to_tensor(labels, tf.int32)
  labels = tf.reshape(tf.transpose(labels), [-1])
  logits = tf.concat([logit1, logit2, logit3, logit4, logit5, logit6, logit7], 0)
  prediction = tf.nn.in_top_k(logits, labels, 1)
  accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32))
  tf.compat.v1.summary.scalar('accuracy', accuracy)
  return accuracy

五、模型训练

import os
import time
import datetime
import numpy as np
import tensorflow as tf
from input_data import OCRIter
import model

os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3'

img_h = 72
img_w = 272
num_label = 7
batch_size = 32
epoch = 10000
learning_rate = 0.0001

logs_path = 'logs\\1005'
model_path = 'saved_model\\1005'

image_holder = tf.compat.v1.placeholder(tf.float32, [batch_size, img_h, img_w, 3])
label_holder = tf.compat.v1.placeholder(tf.int32, [batch_size, 7])
keep_prob = tf.compat.v1.placeholder(tf.float32)


def get_batch():
  data_batch = OCRIter(batch_size, img_h, img_w)
  image_batch, label_batch = data_batch.iter()
  return np.array(image_batch), np.array(label_batch)


logit1, logit2, logit3, logit4, logit5, logit6, logit7 = model.cnn_inference(
  image_holder, keep_prob)

loss1, loss2, loss3, loss4, loss5, loss6, loss7 = model.calc_loss(
  logit1, logit2, logit3, logit4, logit5, logit6, logit7, label_holder)

train_op1, train_op2, train_op3, train_op4, train_op5, train_op6, train_op7 = model.train_step(
  loss1, loss2, loss3, loss4, loss5, loss6, loss7, learning_rate)

accuracy = model.pred_model(logit1, logit2, logit3, logit4, logit5, logit6, logit7, label_holder)

input_image=tf.compat.v1.summary.image('input', image_holder)

summary_op = tf.compat.v1.summary.merge(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.SUMMARIES))

init_op = tf.compat.v1.global_variables_initializer()

with tf.compat.v1.Session() as sess:
  sess.run(init_op)
  
  train_writer = tf.compat.v1.summary.FileWriter(logs_path, sess.graph)
  saver = tf.compat.v1.train.Saver()

  start_time1 = time.time()
  for step in range(epoch):
    # 生成车牌图像以及标签数据
    img_batch, lbl_batch = get_batch()

    start_time2 = time.time()
    time_str = datetime.datetime.now().isoformat()

    feed_dict = {image_holder:img_batch, label_holder:lbl_batch, keep_prob:0.6}
    _1, _2, _3, _4, _5, _6, _7, ls1, ls2, ls3, ls4, ls5, ls6, ls7, acc = sess.run(
      [train_op1, train_op2, train_op3, train_op4, train_op5, train_op6, train_op7, 
       loss1, loss2, loss3, loss4, loss5, loss6, loss7, accuracy], feed_dict)
    summary_str = sess.run(summary_op, feed_dict)
    train_writer.add_summary(summary_str,step)
    duration = time.time() - start_time2
    loss_total = ls1 + ls2 + ls3 + ls4 + ls5 + ls6 + ls7
    if step % 10 == 0:
      sec_per_batch = float(duration)
      print('%s: Step %d, loss_total = %.2f, acc = %.2f%%, sec/batch = %.2f' %
        (time_str, step, loss_total, acc * 100, sec_per_batch))
    if step % 5000 == 0 or (step + 1) == epoch:
      checkpoint_path = os.path.join(model_path,'model.ckpt')
      saver.save(sess, checkpoint_path, global_step=step)
  end_time = time.time()
  print("Training over. It costs {:.2f} minutes".format((end_time - start_time1) / 60))

六、训练结果展示

训练参数:
batch_size = 32
epoch = 10000
learning_rate = 0.0001
在tensorboard中查看训练过程
accuracy :

Python+Tensorflow+CNN实现车牌识别的示例代码accuracy

曲线在epoch = 10000左右时达到收敛,最终精确度在94%左右

loss :
Python+Tensorflow+CNN实现车牌识别的示例代码

Python+Tensorflow+CNN实现车牌识别的示例代码

Python+Tensorflow+CNN实现车牌识别的示例代码

以上三张分别是loss1,loss2, loss7的曲线图像,一号位字符是省份简称,识别相对字母数字较难,loss1=0.08左右,二号位字符是字母,loss2稳定在0.001左右,但是随着字符往后,loss值也将越来越大,7号位字符loss7稳定在0.6左右。

七、预测单张车牌

import os
import cv2 as cv
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
import model

os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3' # 只显示 Error

index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9,
       "苏": 10, "浙": 11, "皖": 12, "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19,
       "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29,
       "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, "6": 37, "7": 38, "8": 39,
       "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, "J": 49,
       "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59,
       "V": 60, "W": 61, "X": 62, "Y": 63, "Z": 64}

chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑",
       "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤",
       "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁",
       "新", "0", "1", "2", "3", "4", "5", "6", "7", "8",
       "9", "A", "B", "C", "D", "E", "F", "G", "H", "J",
       "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U",
       "V", "W", "X", "Y", "Z"]


def get_one_image(test):
  """ 随机获取单张车牌图像 """
  n = len(test)
  rand_num =np.random.randint(0,n)
  img_dir = test[rand_num]
  image_show = Image.open(img_dir)
  plt.imshow(image_show)  # 显示车牌图片
  image = cv.imread(img_dir)
  image = image.reshape(72, 272, 3)
  image = np.multiply(image, 1 / 255.0)
  return image

batch_size = 1
x = tf.compat.v1.placeholder(tf.float32, [batch_size, 72, 272, 3])
keep_prob = tf.compat.v1.placeholder(tf.float32)

test_dir = 'data\\plate\\'
test_image = []
for file in os.listdir(test_dir):
  test_image.append(test_dir + file)
test_image = list(test_image)

image_array = get_one_image(test_image)

logit1, logit2, logit3, logit4, logit5, logit6, logit7 = model.cnn_inference(x, keep_prob)

model_path = 'saved_model\\1005'

saver = tf.compat.v1.train.Saver()

with tf.compat.v1.Session() as sess:
  print ("Reading checkpoint...")
  ckpt = tf.train.get_checkpoint_state(model_path)
  if ckpt and ckpt.model_checkpoint_path:
    global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
    saver.restore(sess, ckpt.model_checkpoint_path)
    print('Loading success, global_step is %s' % global_step)
  else:
    print('No checkpoint file found')

  pre1, pre2, pre3, pre4, pre5, pre6, pre7 = sess.run(
    [logit1, logit2, logit3, logit4, logit5, logit6, logit7],
    feed_dict={x:image_array, keep_prob:1.0})
  prediction = np.reshape(np.array([pre1, pre2, pre3, pre4, pre5, pre6, pre7]), [-1, 65])

  max_index = np.argmax(prediction, axis=1)
  print(max_index)
  line = ''
  result = np.array([])
  for i in range(prediction.shape[0]):
    if i == 0:
      result = np.argmax(prediction[i][0:31])
    if i == 1:
      result = np.argmax(prediction[i][41:65]) + 41
    if i > 1:
      result = np.argmax(prediction[i][31:65]) + 31
    line += chars[result]+" "
  print ('predicted: ' + line)
plt.show()

随机测试20张车牌,18张预测正确,2张预测错误,从最后两幅预测错误的图片可以看出,模型对相似字符以及遮挡字符识别成功率仍有待提高。测试结果部分展示如下:

Python+Tensorflow+CNN实现车牌识别的示例代码

Python+Tensorflow+CNN实现车牌识别的示例代码

Python+Tensorflow+CNN实现车牌识别的示例代码

Python+Tensorflow+CNN实现车牌识别的示例代码

Python+Tensorflow+CNN实现车牌识别的示例代码

Python+Tensorflow+CNN实现车牌识别的示例代码

八、总结

本次构建的CNN模型较为简单,只有6卷积层+3池化层+1全连接层,可以通过增加模型深度以及每层之间的神经元数量来优化模型,提高识别的准确率。此次训练数据集来源于自动生成的车牌,由于真实的车牌图像与生成的车牌图像在噪声干扰上有所区分,所以识别率上会有所出入。如果使用真实的车牌数据集,需要对车牌进行滤波、均衡化、腐蚀、矢量量化等预处理方法。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python基础教程之Hello World!
Aug 29 Python
python实现在目录中查找指定文件的方法
Nov 11 Python
在Python下使用Txt2Html实现网页过滤代理的教程
Apr 11 Python
Python实现比较两个文件夹中代码变化的方法
Jul 10 Python
Python变量和数据类型详解
Feb 15 Python
Python编程实现二叉树及七种遍历方法详解
Jun 02 Python
python 读取文本文件的行数据,文件.splitlines()的方法
Jul 12 Python
python实现按行分割文件
Jul 22 Python
TensorFlow使用Graph的基本操作的实现
Apr 22 Python
Python Opencv轮廓常用操作代码实例解析
Sep 01 Python
Python本地及虚拟解释器配置过程解析
Oct 13 Python
如何用Python提取10000份log中的产品信息
Jan 14 Python
命令行运行Python脚本时传入参数的三种方式详解
Oct 11 #Python
python中对_init_的理解及实例解析
Oct 11 #Python
pandas数据处理进阶详解
Oct 11 #Python
结合OpenCV与TensorFlow进行人脸识别的实现
Oct 10 #Python
树莓派安装OpenCV3完整过程的实现
Oct 10 #Python
树莓派极简安装OpenCv的方法步骤
Oct 10 #Python
python 利用jinja2模板生成html代码实例
Oct 10 #Python
You might like
弄了个检测传输的参数是否为数字的Function
2006/12/06 PHP
mysql 中InnoDB和MyISAM的区别分析小结
2008/04/15 PHP
PHP 使用MySQL管理Session的回调函数详解
2013/06/21 PHP
关于js与php互相传值的介绍
2013/06/25 PHP
PHP GD库生成图像的几个函数总结
2014/11/19 PHP
php生成图片缩略图的方法
2015/04/07 PHP
php 类自动载入的方法
2015/06/03 PHP
PHP 爬取网页的主要方法
2018/07/13 PHP
实例分析PHP将字符串转换成数字的方法
2019/01/27 PHP
nicejforms——美化表单不用愁
2007/02/20 Javascript
用cookies实现的可记忆的样式切换效果代码下载
2007/12/24 Javascript
基于jquery的表头固定的若干方法
2011/01/27 Javascript
jquery tab插件精简版分享
2011/09/10 Javascript
javascript学习笔记(九) js对象 设计模式
2012/06/19 Javascript
jqgrid 编辑添加功能详细解析
2013/11/08 Javascript
JavaScript实现的多种鼠标拖放效果
2015/11/03 Javascript
jQuery遮罩层实现方法实例详解(附遮罩层插件)
2015/12/08 Javascript
EasyUI在表单提交之前进行验证的实例代码
2016/06/24 Javascript
对于Javascript 执行上下文的全面了解
2017/09/05 Javascript
Javascript和jquery在selenium的使用过程
2019/10/31 jQuery
Python遍历目录的4种方法实例介绍
2015/04/13 Python
Python定时任务APScheduler的实例实例详解
2019/07/22 Python
matplotlib实现显示伪彩色图像及色度条
2019/12/07 Python
pycharm激活码快速激活及使用步骤
2020/03/12 Python
python模拟点击玩游戏的实例讲解
2020/11/26 Python
用纯CSS3实现网页中常见的小箭头
2017/10/16 HTML / CSS
struct与class的区别
2014/02/03 面试题
北京天润融通.net面试题笔试题
2012/02/20 面试题
生物制药自我鉴定
2014/01/25 职场文书
公司财务流程之主管工作流程
2014/03/03 职场文书
2014年公司植树节活动方案
2014/03/04 职场文书
工伤赔偿协议书
2014/04/15 职场文书
社区服务活动总结
2014/05/07 职场文书
乡镇消防安全责任书
2014/07/23 职场文书
四风对照检查剖析材料
2014/10/07 职场文书
Pytorch 如何实现LSTM时间序列预测
2021/05/17 Python