Python 爬虫性能相关总结


Posted in Python onAugust 03, 2020

这里我们通过请求网页例子来一步步理解爬虫性能

当我们有一个列表存放了一些url需要我们获取相关数据,我们首先想到的是循环

简单的循环串行

这一种方法相对来说是最慢的,因为一个一个循环,耗时是最长的,是所有的时间总和
代码如下:

import requests

url_list = [
  'http://www.baidu.com',
  'http://www.pythonsite.com',
  'http://www.cnblogs.com/'
]

for url in url_list:
  result = requests.get(url)
  print(result.text)

通过线程池

通过线程池的方式访问,这样整体的耗时是所有连接里耗时最久的那个,相对循环来说快了很多

import requests
from concurrent.futures import ThreadPoolExecutor

def fetch_request(url):
  result = requests.get(url)
  print(result.text)

url_list = [
  'http://www.baidu.com',
  'http://www.bing.com',
  'http://www.cnblogs.com/'
]
pool = ThreadPoolExecutor(10)

for url in url_list:
  #去线程池中获取一个线程,线程去执行fetch_request方法
  pool.submit(fetch_request,url)

pool.shutdown(True)

线程池+回调函数

这里定义了一个回调函数callback

from concurrent.futures import ThreadPoolExecutor
import requests


def fetch_async(url):
  response = requests.get(url)

  return response


def callback(future):
  print(future.result().text)


url_list = [
  'http://www.baidu.com',
  'http://www.bing.com',
  'http://www.cnblogs.com/'
]

pool = ThreadPoolExecutor(5)

for url in url_list:
  v = pool.submit(fetch_async,url)
  #这里调用回调函数
  v.add_done_callback(callback)

pool.shutdown()

通过进程池

通过进程池的方式访问,同样的也是取决于耗时最长的,但是相对于线程来说,进程需要耗费更多的资源,同时这里是访问url时IO操作,所以这里线程池比进程池更好

import requests
from concurrent.futures import ProcessPoolExecutor

def fetch_request(url):
  result = requests.get(url)
  print(result.text)

url_list = [
  'http://www.baidu.com',
  'http://www.bing.com',
  'http://www.cnblogs.com/'
]
pool = ProcessPoolExecutor(10)

for url in url_list:
  #去进程池中获取一个线程,子进程程去执行fetch_request方法
  pool.submit(fetch_request,url)

pool.shutdown(True)

进程池+回调函数

这种方式和线程+回调函数的效果是一样的,相对来说开进程比开线程浪费资源

from concurrent.futures import ProcessPoolExecutor
import requests


def fetch_async(url):
  response = requests.get(url)

  return response


def callback(future):
  print(future.result().text)


url_list = [
  'http://www.baidu.com',
  'http://www.bing.com',
  'http://www.cnblogs.com/'
]

pool = ProcessPoolExecutor(5)

for url in url_list:
  v = pool.submit(fetch_async, url)
  # 这里调用回调函数
  v.add_done_callback(callback)

pool.shutdown()

主流的单线程实现并发的几种方式

  1. asyncio
  2. gevent
  3. Twisted
  4. Tornado

下面分别是这四种代码的实现例子:

asyncio例子1:

import asyncio


@asyncio.coroutine #通过这个装饰器装饰
def func1():
  print('before...func1......')
  # 这里必须用yield from,并且这里必须是asyncio.sleep不能是time.sleep
  yield from asyncio.sleep(2)
  print('end...func1......')


tasks = [func1(), func1()]

loop = asyncio.get_event_loop()
loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

上述的效果是同时会打印两个before的内容,然后等待2秒打印end内容
这里asyncio并没有提供我们发送http请求的方法,但是我们可以在yield from这里构造http请求的方法。

asyncio例子2:

import asyncio


@asyncio.coroutine
def fetch_async(host, url='/'):
  print("----",host, url)
  reader, writer = yield from asyncio.open_connection(host, 80)

  #构造请求头内容
  request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,)
  request_header_content = bytes(request_header_content, encoding='utf-8')
  #发送请求
  writer.write(request_header_content)
  yield from writer.drain()
  text = yield from reader.read()
  print(host, url, text)
  writer.close()

tasks = [
  fetch_async('www.cnblogs.com', '/zhaof/'),
  fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

asyncio + aiohttp 代码例子:

import aiohttp
import asyncio


@asyncio.coroutine
def fetch_async(url):
  print(url)
  response = yield from aiohttp.request('GET', url)
  print(url, response)
  response.close()


tasks = [fetch_async('http://baidu.com/'), fetch_async('http://www.chouti.com/')]

event_loop = asyncio.get_event_loop()
results = event_loop.run_until_complete(asyncio.gather(*tasks))
event_loop.close()

asyncio+requests代码例子

import asyncio
import requests


@asyncio.coroutine
def fetch_async(func, *args):
  loop = asyncio.get_event_loop()
  future = loop.run_in_executor(None, func, *args)
  response = yield from future
  print(response.url, response.content)


tasks = [
  fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'),
  fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091')
]

loop = asyncio.get_event_loop()
results = loop.run_until_complete(asyncio.gather(*tasks))
loop.close()

gevent+requests代码例子

import gevent

import requests
from gevent import monkey

monkey.patch_all()


def fetch_async(method, url, req_kwargs):
  print(method, url, req_kwargs)
  response = requests.request(method=method, url=url, **req_kwargs)
  print(response.url, response.content)

# ##### 发送请求 #####
gevent.joinall([
  gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
  gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
  gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}),
])

# ##### 发送请求(协程池控制最大协程数量) #####
# from gevent.pool import Pool
# pool = Pool(None)
# gevent.joinall([
#   pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}),
#   pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}),
#   pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}),
# ])

grequests代码例子
这个是讲requests+gevent进行了封装

import grequests


request_list = [
  grequests.get('http://httpbin.org/delay/1', timeout=0.001),
  grequests.get('http://fakedomain/'),
  grequests.get('http://httpbin.org/status/500')
]


# ##### 执行并获取响应列表 #####
# response_list = grequests.map(request_list)
# print(response_list)


# ##### 执行并获取响应列表(处理异常) #####
# def exception_handler(request, exception):
# print(request,exception)
#   print("Request failed")

# response_list = grequests.map(request_list, exception_handler=exception_handler)
# print(response_list)

twisted代码例子

#getPage相当于requets模块,defer特殊的返回值,rector是做事件循环
from twisted.web.client import getPage, defer
from twisted.internet import reactor

def all_done(arg):
  reactor.stop()

def callback(contents):
  print(contents)

deferred_list = []

url_list = ['http://www.bing.com', 'http://www.baidu.com', ]
for url in url_list:
  deferred = getPage(bytes(url, encoding='utf8'))
  deferred.addCallback(callback)
  deferred_list.append(deferred)
#这里就是进就行一种检测,判断所有的请求知否执行完毕
dlist = defer.DeferredList(deferred_list)
dlist.addBoth(all_done)

reactor.run()

tornado代码例子

from tornado.httpclient import AsyncHTTPClient
from tornado.httpclient import HTTPRequest
from tornado import ioloop


def handle_response(response):
  """
  处理返回值内容(需要维护计数器,来停止IO循环),调用 ioloop.IOLoop.current().stop()
  :param response: 
  :return: 
  """
  if response.error:
    print("Error:", response.error)
  else:
    print(response.body)


def func():
  url_list = [
    'http://www.baidu.com',
    'http://www.bing.com',
  ]
  for url in url_list:
    print(url)
    http_client = AsyncHTTPClient()
    http_client.fetch(HTTPRequest(url), handle_response)


ioloop.IOLoop.current().add_callback(func)
ioloop.IOLoop.current().start()

以上就是Python 爬虫性能相关总结的详细内容,更多关于Python 爬虫性能的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
Python批量修改文本文件内容的方法
Apr 29 Python
Django ORM框架的定时任务如何使用详解
Oct 19 Python
Python基于列表list实现的CRUD操作功能示例
Jan 05 Python
python实现抖音视频批量下载
Jun 20 Python
Python实现的多叉树寻找最短路径算法示例
Jul 30 Python
在python 中实现运行多条shell命令
Jan 07 Python
python实现邮件发送功能
Aug 10 Python
使用Python发现隐藏的wifi
Mar 04 Python
Python3自定义http/https请求拦截mitmproxy脚本实例
May 11 Python
新手学python应该下哪个版本
Jun 11 Python
django前端页面下拉选择框默认值设置方式
Aug 09 Python
python利用opencv保存、播放视频
Nov 02 Python
python接口自动化之ConfigParser配置文件的使用详解
Aug 03 #Python
Python 利用OpenCV给照片换底色的示例代码
Aug 03 #Python
Python3基于plotly模块保存图片表格
Aug 03 #Python
详解Python的爬虫框架 Scrapy
Aug 03 #Python
Python利用Faiss库实现ANN近邻搜索的方法详解
Aug 03 #Python
Python pexpect模块及shell脚本except原理解析
Aug 03 #Python
python爬虫使用正则爬取网站的实现
Aug 03 #Python
You might like
PHP同时连接多个mysql数据库示例代码
2014/03/17 PHP
Yii框架核心组件类实例详解
2019/08/06 PHP
jquery如何改变html标签的样式(两种实现方法)
2013/01/16 Javascript
JavaScript Array对象详解
2016/03/01 Javascript
jQuery实现无限往下滚动效果代码
2016/04/16 Javascript
【经典源码收藏】基于jQuery的项目常见函数封装集合
2016/06/07 Javascript
JS动态的把左边列表添加到右边的实现代码(可上下移动)
2016/11/17 Javascript
javaScript中定义类或对象的五种方式总结
2016/12/04 Javascript
ajax实现动态下拉框示例
2017/01/10 Javascript
详解webpack 如何集成第三方js库
2017/06/29 Javascript
详解使用Typescript开发node.js项目(简单的环境配置)
2017/10/09 Javascript
详解ES6 Promise对象then方法链式调用
2018/10/20 Javascript
JS判断两个数组或对象是否相同的方法示例
2019/02/28 Javascript
Vue实现微信支付功能遇到的坑
2019/06/05 Javascript
JS字符串与二进制的相互转化实例代码详解
2019/06/28 Javascript
Node4-5静态资源服务器实战以及优化压缩文件实例内容
2019/08/29 Javascript
详解Nuxt内导航栏的两种实现方式
2020/04/16 Javascript
Vue-cli3生成的Vue项目加载Mxgraph方法示例
2020/05/31 Javascript
跟老齐学Python之玩转字符串(3)
2014/09/14 Python
Python用for循环实现九九乘法表
2018/05/31 Python
利用python对Excel中的特定数据提取并写入新表的方法
2018/06/14 Python
解决Python 中英文混输格式对齐的问题
2018/07/16 Python
基于Python实现用户管理系统
2019/02/26 Python
Python3.6实现带有简单界面的有道翻译小程序
2019/04/16 Python
简单了解python高阶函数map/reduce
2019/06/28 Python
Python自动化测试基础必备知识点总结
2021/02/07 Python
Python 调用C++封装的进一步探索交流
2021/03/04 Python
通信工程专业个人找工作求职信范文
2013/09/21 职场文书
入党自我鉴定范文
2013/10/04 职场文书
规划编制实施方案
2014/03/15 职场文书
交通事故调解协议书
2014/04/16 职场文书
银行员工犯错检讨书
2014/09/16 职场文书
教师党的群众路线教育实践活动个人整改方案
2014/10/31 职场文书
通知怎么写?
2019/04/17 职场文书
nginx location中多个if里面proxy_pass的方法
2021/03/31 Servers
一次SQL查询优化原理分析(900W+数据从17s到300ms)
2022/06/10 SQL Server