python爬虫使用正则爬取网站的实现


Posted in Python onAugust 03, 2020

本文章的所有代码和相关文章, 仅用于经验技术交流分享,禁止将相关技术应用到不正当途径,滥用技术产生的风险与本人无关。

本文章是自己学习的一些记录。欢迎各位大佬点评!

首先

今天是第一天写博客,感受到了博客的魅力,博客不仅能够记录每天的代码学习情况,并且可以当作是自己的学习笔记,以便在后面知识点不清楚的时候前来复习。这是第一次使用爬虫爬取网页,这里展示的是爬取豆瓣电影top250的整个过程,欢迎大家指点。

这里我只爬取了电影链接和电影名称,如果想要更加完整的爬取代码,请联系我。qq 1540741344 欢迎交流

开发工具: pycharm、chrome

分析网页

在开发之前你首先要去你所要爬取的网页提取出你要爬取的网页链接,并且将网页分析出你想要的内容。

在开发之前首先要导入几个模块,模块描述如下,具体不知道怎么导入包的可以看我下一篇内容

python爬虫使用正则爬取网站的实现

首先定义几个函数,便于将各个步骤的工作分开便于代码管理,我这里是分成了7个函数,分别如下:

@主函数入口

if __name__=="__main__":    #程序执行入口
  main()

@捕获网页html内容 askURL(url)

这里的head的提取是在chrome中分析网页源码获得的,具体我也不做过多解释,大家可以百度

def askURL(url): #得到指定网页信息的内容 #爬取一个网页的数据
  # 用户代理,本质上是告诉服务器,我们是以什么样的机器来访问网站,以便接受什么样的水平数据
  head={"User-Agent":"Mozilla / 5.0(Windows NT 10.0;Win64;x64) AppleWebKit / 537.36(KHTML, likeGecko) Chrome / 84.0.4147.89 Safari / 537.36"}
  request=urllib.request.Request(url,headers=head)     #request对象接受封装的信息,通过urllib携带headers访问信息访问url
  response=urllib.request.urlopen(request)         #用于接收返回的网页信息
  html=response.read().decode("utf-8")           #通过read方法读取response对象里的网页信息,使用“utf-8”
  return html

@将baseurl里的内容进行逐一解析 getData(baseURL)
这里面的findlink和findname是正则表达式,可以首先定义全局变量

findlink=r'<a class="" href="(.*?)"'
findname=r'<span class="title">(.*?)</span>'
def getData(baseURL):
  dataList=[]                   #初始化datalist用于存储获取到的数据
  for i in range(0,10):
    url=baseURL+str(i*25)
    html=askURL(url)                  #保存获取到的源码
    soup=BeautifulSoup(html,"html.parser")       #对html进行逐一解析,使用html.parser解析器进行解析
    for item in soup.find_all("div",class_="item"):   #查找符合要求的字符串 ,形成列表,find_all是查找所有的class是item的div
      data=[]                     #初始化data,用于捕获一次爬取一个div里面的内容
      item=str(item)                 #将item数据类型转化为字符串类型
      # print(item)
      link=re.findall(findlink,item)[0]        #使用re里的findall方法根据正则提取item里面的电影链接
      data.append(link)                #将网页链接追加到data里
      name=re.findall(findname,item)[0]        #使用re里的findall方法根据正则提取item里面的电影名字
      data.append(name)                #将电影名字链接追加到data里
      # print(link)
      # print(name)
      dataList.append(data)              #将捕获的电影链接和电影名存到datalist里面
  return dataList                     #返回一个列表,里面存放的是每个电影的信息
  print(dataList)

@保存捕获的数据到excel saveData(dataList,savepath)

def saveData(dataList,savepath):              #保存捕获的内容到excel里,datalist是捕获的数据列表,savepath是保存路径
  book=xlwt.Workbook(encoding="utf-8",style_compression=0)#初始化book对象,这里首先要导入xlwt的包
  sheet=book.add_sheet("test",cell_overwrite_ok=True)   #创建工作表
  col=["电影详情链接","电影名称"]              #列名
  for i in range(0,2):
    sheet.write(0,i,col[i])               #将列名逐一写入到excel
  for i in range(0,250):
    data=dataList[i]                  #依次将datalist里的数据获取
    for j in range(0,2):
      sheet.write(i+1,j,data[j])           #将data里面的数据逐一写入
  book.save(savepath)

@保存捕获的数据到数据库

def saveDataDb(dataList,dbpath):
  initDb(dbpath)                     #用一个函数初始化数据库
  conn=sqlite3.connect(dbpath)              #初始化数据库
  cur=conn.cursor()                    #获取游标
  for data in dataList:                  
    for index in range(len(data)): 
      data[index]='"'+data[index]+'" '        #将每条数据都加上""
    #每条数据之间用,隔开,定义sql语句的格式
    sql='''
      insert into test(link,name) values (%s)     
    '''%','.join (data)
    cur.execute(sql)                  #执行sql语句
    conn.commit()                    #提交数据库操作
  conn.close()
  print("爬取存入数据库成功!")

@初始化数据库 initDb(dbpath)

def initDb(dbpath):
  conn=sqlite3.connect(dbpath)
  cur=conn.cursor()
  sql='''
    create table test(
      id integer primary key autoincrement,
      link text,
      name varchar 
      
    )
  '''
  cur.execute(sql)
  conn.commit()
  cur.close()
  conn.close()

@main函数,用于调用其他函数 main()

def main():
  dbpath="testSpider.db"               #用于指定数据库存储路径
  savepath="testSpider.xls"             #用于指定excel存储路径
  baseURL="https://movie.douban.com/top250?start="  #爬取的网页初始链接
  dataList=getData(baseURL)
  saveData(dataList,savepath)
  saveDataDb(dataList,dbpath)

点击运行就可以看到在左侧已经生成了excel和DB文件

python爬虫使用正则爬取网站的实现

excel可以直接打开

python爬虫使用正则爬取网站的实现

DB文件双击之后会在右边打开

python爬虫使用正则爬取网站的实现

到这里爬虫的基本内容就已经结束了,如果有什么不懂或者想交流的地方可以加我qq 1540741344

以下附上整个代码

import re                  #网页解析,获取数据
from bs4 import BeautifulSoup        #正则表达式,进行文字匹配
import urllib.request,urllib.error     #制定URL,获取网页数据
import xlwt
import sqlite3

findlink=r'<a class="" href="(.*?)"'
findname=r'<span class="title">(.*?)</span>'
def main():
  dbpath="testSpider.db"               #用于指定数据库存储路径
  savepath="testSpider.xls"             #用于指定excel存储路径
  baseURL="https://movie.douban.com/top250?start="  #爬取的网页初始链接
  dataList=getData(baseURL)
  saveData(dataList,savepath)
  saveDataDb(dataList,dbpath)
def askURL(url): #得到指定网页信息的内容 #爬取一个网页的数据
  # 用户代理,本质上是告诉服务器,我们是以什么样的机器来访问网站,以便接受什么样的水平数据
  head={"User-Agent":"Mozilla / 5.0(Windows NT 10.0;Win64;x64) AppleWebKit / 537.36(KHTML, likeGecko) Chrome / 84.0.4147.89 Safari / 537.36"}
  request=urllib.request.Request(url,headers=head)     #request对象接受封装的信息,通过urllib携带headers访问信息访问url
  response=urllib.request.urlopen(request)         #用于接收返回的网页信息
  html=response.read().decode("utf-8")           #通过read方法读取response对象里的网页信息,使用“utf-8”
  return html                       #返回捕获的网页内容,此时还是未处理过的
def getData(baseURL):
  dataList=[]                   #初始化datalist用于存储获取到的数据
  for i in range(0,10):
    url=baseURL+str(i*25)
    html=askURL(url)                  #保存获取到的源码
    soup=BeautifulSoup(html,"html.parser")       #对html进行逐一解析,使用html.parser解析器进行解析
    for item in soup.find_all("div",class_="item"):   #查找符合要求的字符串 ,形成列表,find_all是查找所有的class是item的div
      data=[]                     #初始化data,用于捕获一次爬取一个div里面的内容
      item=str(item)                 #将item数据类型转化为字符串类型
      # print(item)
      link=re.findall(findlink,item)[0]        #使用re里的findall方法根据正则提取item里面的电影链接
      data.append(link)                #将网页链接追加到data里
      name=re.findall(findname,item)[0]        #使用re里的findall方法根据正则提取item里面的电影名字
      data.append(name)                #将电影名字链接追加到data里
      # print(link)
      # print(name)
      dataList.append(data)              #将捕获的电影链接和电影名存到datalist里面
  return dataList                     #返回一个列表,里面存放的是每个电影的信息
  print(dataList)

def saveData(dataList,savepath):              #保存捕获的内容到excel里,datalist是捕获的数据列表,savepath是保存路径
  book=xlwt.Workbook(encoding="utf-8",style_compression=0)#初始化book对象,这里首先要导入xlwt的包
  sheet=book.add_sheet("test",cell_overwrite_ok=True)   #创建工作表
  col=["电影详情链接","电影名称"]              #列名
  for i in range(0,2):
    sheet.write(0,i,col[i])               #将列名逐一写入到excel
  for i in range(0,250):
    data=dataList[i]                  #依次将datalist里的数据获取
    for j in range(0,2):
      sheet.write(i+1,j,data[j])           #将data里面的数据逐一写入
  book.save(savepath)                   #保存excel文件

def saveDataDb(dataList,dbpath):
  initDb(dbpath)                     #用一个函数初始化数据库
  conn=sqlite3.connect(dbpath)              #初始化数据库
  cur=conn.cursor()                    #获取游标
  for data in dataList:
    for index in range(len(data)):
      data[index]='"'+data[index]+'" '        #将每条数据都加上""
    #每条数据之间用,隔开,定义sql语句的格式
    sql='''
      insert into test(link,name) values (%s)     
    '''%','.join (data)
    cur.execute(sql)                  #执行sql语句
    conn.commit()                    #提交数据库操作
  conn.close()
  print("爬取存入数据库成功!")
def initDb(dbpath):
  conn=sqlite3.connect(dbpath)
  cur=conn.cursor()
  sql='''
    create table test(
      id integer primary key autoincrement,
      link text,
      name varchar 
      
    )
  '''
  cur.execute(sql)
  conn.commit()
  cur.close()
  conn.close()
if __name__=="__main__":    #程序执行入口
  main()

到此这篇关于python爬虫使用正则爬取网站的实现的文章就介绍到这了,更多相关python正则爬取内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
使用Python编写vim插件的简单示例
Apr 17 Python
Python爬取国外天气预报网站的方法
Jul 10 Python
python实现随机梯度下降(SGD)
Mar 24 Python
用Python下载一个网页保存为本地的HTML文件实例
May 21 Python
Python单元测试简单示例
Jul 03 Python
python中字符串内置函数的用法总结
Sep 13 Python
Django之创建引擎索引报错及解决详解
Jul 17 Python
python实现身份证实名认证的方法实例
Nov 08 Python
细数nn.BCELoss与nn.CrossEntropyLoss的区别
Feb 29 Python
Python多进程multiprocessing、进程池用法实例分析
Mar 24 Python
python实现学生成绩测评系统
Jun 22 Python
Python执行时间的几种计算方法
Jul 31 Python
python获取整个网页源码的方法
Aug 03 #Python
flask开启多线程的具体方法
Aug 02 #Python
基于opencv实现简单画板功能
Aug 02 #Python
django下创建多个app并设置urls方法
Aug 02 #Python
Django如何在不停机的情况下创建索引
Aug 02 #Python
如何用Anaconda搭建虚拟环境并创建Django项目
Aug 02 #Python
如何解决flask修改静态资源后缓存文件不能及时更改问题
Aug 02 #Python
You might like
PHP fopen()和 file_get_contents()应用与差异介绍
2014/03/19 PHP
windows中为php安装mongodb与memcache
2015/01/06 PHP
php函数实现判断是否移动端访问
2015/03/03 PHP
php中mkdir()函数的权限问题分析
2016/09/24 PHP
Centos7安装swoole扩展操作示例
2020/03/26 PHP
showModelessDialog()使用详解
2006/09/21 Javascript
JQuery从头学起第一讲
2010/07/04 Javascript
jQuery插件-jRating评分插件源码分析及使用方法
2012/12/28 Javascript
用js的document.write输出的广告无阻塞加载的方法
2014/06/05 Javascript
jQuery on()方法示例及jquery on()方法的优点
2015/08/27 Javascript
JavaScript 性能优化小结
2015/10/12 Javascript
jquery+ajax实现直接提交表单实例分析
2016/06/17 Javascript
JS JSOP跨域请求实例详解
2016/07/04 Javascript
html5 canvas 详细使用教程
2017/01/20 Javascript
Node.js 中exports 和 module.exports 的区别
2017/03/14 Javascript
JS实现异步上传压缩图片
2017/04/22 Javascript
深入理解与使用keep-alive(配合router-view缓存整个路由页面)
2018/09/25 Javascript
详解Vuex下Store的模块化拆分实践
2019/07/31 Javascript
Vue中常用rules校验规则(实例代码)
2019/11/14 Javascript
[45:16]完美世界DOTA2联赛循环赛 IO vs FTD BO2第二场 11.05
2020/11/06 DOTA
python占位符输入方式实例
2019/05/27 Python
Python基本数据结构之字典类型dict用法分析
2019/06/08 Python
wxPython实现画图板
2020/08/27 Python
使用 tf.nn.dynamic_rnn 展开时间维度方式
2020/01/21 Python
浅析python标准库中的glob
2020/03/13 Python
翻转数列python实现,求前n项和,并能输出整个数列的案例
2020/05/03 Python
anaconda3安装及jupyter环境配置全教程
2020/08/24 Python
html5实现完美兼容各大浏览器的播放器
2014/12/26 HTML / CSS
html5 postMessage解决跨域、跨窗口消息传递方案
2016/12/20 HTML / CSS
canvas 如何绘制线段的实现方法
2018/07/12 HTML / CSS
奥巴马演讲稿
2014/01/08 职场文书
红旗团支部事迹材料
2014/01/27 职场文书
新员工试用期自我鉴定
2014/04/17 职场文书
公司授权委托书范本
2014/09/18 职场文书
Go语言操作数据库及其常规操作的示例代码
2021/04/21 Golang
MySQL query_cache_type 参数与使用详解
2021/07/01 MySQL