基于python plotly交互式图表大全


Posted in Python onDecember 07, 2019

plotly可以制作交互式图表,直接上代码:

import plotly.offline as py
from plotly.graph_objs import Scatter, Layout
import plotly.graph_objs as go
py.init_notebook_mode(connected=True)
import pandas as pd
import numpy as np

In [412]:

#读取数据
df=pd.read_csv('seaborn.csv',sep=',',encoding='utf-8',index_col=0)
#展示数据
df.head()
Out[412]:
Name Type 1 Type 2 Total HP Attack Defense Sp. Atk Sp. Def Speed Stage Legendary
#
1 Bulbasaur Grass Poison 318 45 49 49 65 65 45 1 False
2 Ivysaur Grass Poison 405 60 62 63 80 80 60 2 False
3 Venusaur Grass Poison 525 80 82 83 100 100 80 3 False
4 Charmander Fire NaN 309 39 52 43 60 50 65 1 False
5 Charmeleon Fire NaN 405 58 64 58 80 65 80 2 False

In [413]:

#plotly折线图,trace就代表折现的条数
trace1=go.Scatter(x=df['Attack'],y=df['Defense'])
trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2])
trace2=go.Scatter(x=[1,2,3,4,5],y=[2,1,4,6,7])
py.iplot([trace1,trace2])

基于python plotly交互式图表大全

#填充区域
trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2],fill="tonexty",fillcolor="#FF0")
py.iplot([trace1])

基于python plotly交互式图表大全

# 散点图
trace1=go.Scatter(x=[1,2,3,4,5],y=[2,1,3,5,2],mode='markers')
trace1=go.Scatter(x=df['Attack'],y=df['Defense'],mode='markers')
py.iplot([trace1],filename='basic-scatter')

基于python plotly交互式图表大全

#气泡图
x=df['Attack']
y=df['Defense']
colors = np.random.rand(len(x))#set color equal to a variable
sz =df['Defense']
fig = go.Figure()
fig.add_scatter(x=x,y=y,mode='markers',marker={'size': sz,'color': colors,'opacity': 0.7,'colorscale': 'Viridis','showscale': True})
py.iplot(fig)

基于python plotly交互式图表大全

#bar 柱状图
df1=df[['Name','Defense']].sort_values(['Defense'],ascending=[0])
data = [go.Bar(x=df1['Name'],y=df1['Defense'])]
py.iplot(data, filename='jupyter-basic_bar')

基于python plotly交互式图表大全

#组合bar  group
trace1 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[20, 14, 23],name='SF Zoo')
trace2 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[12, 18, 29],name='LA Zoo')
data = [trace1, trace2]
layout = go.Layout( barmode='group')
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='grouped-bar')

基于python plotly交互式图表大全

#组合bar  gstack上下组合
trace1 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[20, 14, 23],name='SF Zoo')
trace2 = go.Bar(x=['giraffes', 'orangutans', 'monkeys'],y=[12, 18, 29],name='LA Zoo',text=[12, 18, 29],textposition = 'auto')
data = [trace1, trace2]
layout = go.Layout( barmode='stack')
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename='grouped-bar')

基于python plotly交互式图表大全

#饼图
fig = {
 "data": [
  {
   "values": df['Defense'][0:3],
   "labels": df['Name'][0:3],
   "domain": {"x": [0,1]},
   "name": "GHG Emissions",
   "hoverinfo":"label+percent+name",
   "hole": .4,
   "type": "pie"
  }
    ],
  
 "layout": {
    "title":"Global Emissions 1990-2011",
    "annotations": [
      {
        "font": {"size": 20},
        "showarrow": False,
        "text": "GHG",
        "x": 0.5,
        "y": 0.5
      }
            ]
      }
  }
py.iplot(fig, filename='donut')

基于python plotly交互式图表大全

# Learn about API authentication here: https://plot.ly/pandas/getting-started
# Find your api_key here: https://plot.ly/settings/api
#雷达图
data = [
  go.Scatterpolar(
   r = [39, 28, 8, 7, 28, 39],
   theta = ['A','B','C', 'D', 'E', 'A'],
   fill = 'toself',
   name = 'Group A'
  ),
  go.Scatterpolar(
   r = [1.5, 10, 39, 31, 15, 1.5],
   theta = ['A','B','C', 'D', 'E', 'A'],
   fill = 'toself',
   name = 'Group B'
  )
]
 
layout = go.Layout(
 polar = dict(
  radialaxis = dict(
   visible = True,
   range = [0, 50]
  )
 ),
 showlegend = False
)
 
fig = go.Figure(data=data, layout=layout)
py.iplot(fig, filename = "radar/multiple")

基于python plotly交互式图表大全

#box 箱子图
df_box=df[['HP','Attack','Defense','Speed']]
data = []
for col in df_box.columns:
  data.append(go.Box(y=df_box[col], name=col, showlegend=True ) )
#data.append( go.Scatter(x= df_box.columns, y=df.mean(), mode='lines', name='mean' ) )
py.iplot(data, filename='pandas-box-plot')

基于python plotly交互式图表大全

#箱子图加平均线
df_box=df[['HP','Attack','Defense','Speed']]
data = []
for col in df_box.columns:
  data.append(go.Box(y=df_box[col], name=col, showlegend=True) )
data.append( go.Scatter(x= df_box.columns, y=df.mean(), mode='lines', name='mean' ) )
py.iplot(data, filename='pandas-box-plot')

基于python plotly交互式图表大全

#Basic Horizontal Bar Chart 条形图 plotly条形图
df_hb=df[['Name','Attack','Defense','Speed']][0:5].sort_values(['Attack'],ascending=[1])
data = [
  go.Bar(
    y=df_hb['Name'], # assign x as the dataframe column 'x'
    x=df_hb['Attack'],
    orientation='h',
    text=df_hb['Attack'],
    textposition = 'auto'
  )
]
py.iplot(data, filename='pandas-horizontal-bar')

基于python plotly交互式图表大全

#直方图Histogram
data = [go.Histogram(x=df['Attack'])]
py.iplot(data, filename='basic histogram')

基于python plotly交互式图表大全

#distplot
import plotly.figure_factory as ff 
hist_data =[df['Defense']]
group_labels = ['distplot']
fig = ff.create_distplot(hist_data, group_labels)
# Add title
fig['layout'].update(title='Hist and Rug Plot',xaxis=dict(range=[0,200]))
py.iplot(fig, filename='Basic Distplot')

基于python plotly交互式图表大全

# Add histogram data
x1 = np.random.randn(200)-2 
x2 = np.random.randn(200) 
x3 = np.random.randn(200)+2 
x4 = np.random.randn(200)+4 
 
# Group data together
hist_data = [x1, x2, x3, x4]
group_labels = ['Group 1', 'Group 2', 'Group 3', 'Group 4']
# Create distplot with custom bin_size
fig = ff.create_distplot(hist_data, group_labels,)
# Plot!
py.iplot(fig, filename='Distplot with Multiple Datasets')

基于python plotly交互式图表大全

好了,以上就是我研究的plotly,欢迎朋友们评论,补充,一起学习!

以上这篇基于python plotly交互式图表大全就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
详解Python的Django框架中的templates设置
May 11 Python
Python 调用Java实例详解
Jun 02 Python
Python原始字符串与Unicode字符串操作符用法实例分析
Jul 22 Python
解决出现Incorrect integer value: '' for column 'id' at row 1的问题
Oct 29 Python
VScode编写第一个Python程序HelloWorld步骤
Apr 06 Python
python merge、concat合并数据集的实例讲解
Apr 12 Python
Python打包方法Pyinstaller的使用
Oct 09 Python
在python中实现强制关闭线程的示例
Jan 22 Python
python3实现钉钉消息推送的方法示例
Mar 14 Python
Python Pandas对缺失值的处理方法
Sep 27 Python
Python3.7+tkinter实现查询界面功能
Dec 24 Python
Python终端输出彩色字符方法详解
Feb 11 Python
Python数据可视化:顶级绘图库plotly详解
Dec 07 #Python
python将时分秒转换成秒的实例
Dec 07 #Python
pandas实现将日期转换成timestamp
Dec 07 #Python
Python 装饰器原理、定义与用法详解
Dec 07 #Python
Python Pandas 转换unix时间戳方式
Dec 07 #Python
Pandas-Cookbook 时间戳处理方式
Dec 07 #Python
Python数据可视化:饼状图的实例讲解
Dec 07 #Python
You might like
PHP执行SQL文件并将SQL文件导入到数据库
2015/09/17 PHP
php从数据库读取数据,并以json格式返回数据的方法
2018/08/21 PHP
该如何加载google-analytics(或其他第三方)的JS
2010/05/13 Javascript
javascript 学习笔记(onchange等)
2010/11/14 Javascript
让你的CSS像Jquery一样做筛选的实现方法
2011/07/10 Javascript
jquery动态加载select下拉框示例代码
2013/12/10 Javascript
Node.js文件操作详解
2014/08/16 Javascript
JavaScript中判断页面关闭、页面刷新的实现代码
2014/08/27 Javascript
jQuery基础语法实例入门
2014/12/23 Javascript
深入理解JavaScript编程中的同步与异步机制
2015/06/24 Javascript
封装的dialog插件 基于bootstrap模态对话框的简单扩展
2016/08/10 Javascript
微信小程序开发之视频播放器 Video 弹幕 弹幕颜色自定义实例
2016/12/08 Javascript
滚动条的监听与内容随着滚动条动态加载的实现
2017/02/08 Javascript
vue2.0实现音乐/视频播放进度条组件
2018/06/06 Javascript
React Native开发封装Toast与加载Loading组件示例
2018/09/08 Javascript
js变量声明var使用与不使用的区别详解
2019/01/21 Javascript
Vue路由权限控制解析
2020/11/09 Javascript
在Django的视图中使用form对象的方法
2015/07/18 Python
浅谈Python数据类型之间的转换
2016/06/08 Python
Python基于回溯法子集树模板解决全排列问题示例
2017/09/07 Python
python如何使用正则表达式的前向、后向搜索及前向搜索否定模式详解
2017/11/08 Python
Python切片操作深入详解
2018/07/27 Python
python删除文件、清空目录的实现方法
2020/09/23 Python
细说CSS3中的选择符
2008/10/17 HTML / CSS
AmazeUI 图标的示例代码
2020/08/13 HTML / CSS
三星加拿大官方网上商店:Samsung CA
2020/12/18 全球购物
写一个函数,求一个字符串的长度。在main函数中输入字符串,并输出其长度
2015/11/18 面试题
法律工作求职自荐信
2013/10/31 职场文书
军训生自我鉴定范文
2013/12/27 职场文书
给物业的表扬信
2014/01/21 职场文书
作风建设年活动实施方案
2014/10/24 职场文书
感谢信的格式
2015/01/21 职场文书
vue前端工程的搭建
2021/03/31 Vue.js
python 制作一个gui界面的翻译工具
2021/05/14 Python
Android开发EditText禁止输入监听及InputFilter字符过滤
2022/06/10 Java/Android
Python自动操作神器PyAutoGUI的使用教程
2022/06/16 Python