python多线程方法详解


Posted in Python onJanuary 18, 2022

处理多个数据和多文件时,使用for循环的速度非常慢,此时需要用多线程来加速运行进度,常用的模块为multiprocess和joblib,下面对两种包我常用的方法进行说明。

1、模块安装

pip install multiprocessing
pip install joblib

2、以分块计算NDVI为例

首先导入需要的包

import numpy as np
from osgeo import gdal
import time
from multiprocessing import cpu_count
from multiprocessing import Pool
from joblib import Parallel, delayed

定义GdalUtil类,以读取遥感数据

class GdalUtil:
    def __init__(self):
        pass
    @staticmethod
    def read_file(raster_file, read_band=None):
        """读取栅格数据"""
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
        # 打开输入图像
        dataset = gdal.Open(raster_file, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_file)
        # 列
        raster_width = dataset.RasterXSize
        # 行
        raster_height = dataset.RasterYSize
        # 读取数据
        if read_band == None:
            data_array = dataset.ReadAsArray(0, 0, raster_width, raster_height)
        else:
            band = dataset.GetRasterBand(read_band)
            data_array = band.ReadAsArray(0, 0, raster_width, raster_height)
        return data_array
 
    @staticmethod
    def read_block_data(dataset, band_num, cols_read, rows_read, start_col=0, start_row=0):
        band = dataset.GetRasterBand(band_num)
        res_data = band.ReadAsArray(start_col, start_row, cols_read, rows_read)
        return res_data
 
    @staticmethod
    def get_raster_band(raster_path):
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
        # 打开输入图像
        dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_path)
        raster_band = dataset.RasterCount
        return raster_band
 
    @staticmethod
    def get_file_size(raster_path):
        """获取栅格仿射变换参数"""
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
 
        # 打开输入图像
        dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_path)
        # 列
        raster_width = dataset.RasterXSize
        # 行
        raster_height = dataset.RasterYSize
        return raster_width, raster_height
 
    @staticmethod
    def get_file_geotransform(raster_path):
        """获取栅格仿射变换参数"""
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
 
        # 打开输入图像
        dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_path)
 
        # 获取输入图像仿射变换参数
        input_geotransform = dataset.GetGeoTransform()
        return input_geotransform
 
    @staticmethod
    def get_file_proj(raster_path):
        """获取栅格图像空间参考"""
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
 
        # 打开输入图像
        dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_path)
 
        # 获取输入图像空间参考
        input_project = dataset.GetProjection()
        return input_project
 
    @staticmethod
    def write_file(dataset, geotransform, project, output_path, out_format='GTiff', eType=gdal.GDT_Float32):
        """写入栅格"""
        if np.ndim(dataset) == 3:
            out_band, out_rows, out_cols = dataset.shape
        else:
            out_band = 1
            out_rows, out_cols = dataset.shape
 
        # 创建指定输出格式的驱动
        out_driver = gdal.GetDriverByName(out_format)
        if out_driver == None:
            print('格式%s 不支持Creat()方法.\n', out_format)
            return
 
        out_dataset = out_driver.Create(output_path, xsize=out_cols,
                                        ysize=out_rows, bands=out_band,
                                        eType=eType)
        # 设置输出图像的仿射参数
        out_dataset.SetGeoTransform(geotransform)
 
        # 设置输出图像的投影参数
        out_dataset.SetProjection(project)
 
        # 写出数据
        if out_band == 1:
            out_dataset.GetRasterBand(1).WriteArray(dataset)
        else:
            for i in range(out_band):
                out_dataset.GetRasterBand(i + 1).WriteArray(dataset[i])
        del out_dataset

定义计算NDVI的函数

def cal_ndvi(multi):
    '''
    计算高分NDVI
    :param multi:格式为列表,依次包含[遥感文件路径,开始行号,开始列号,待读的行数,待读的列数]
    :return: NDVI数组
    '''
    input_file, start_col, start_row, cols_step, rows_step = multi
    dataset = gdal.Open(input_file, gdal.GA_ReadOnly)
    nir_data = GdalUtil.read_block_data(dataset, 4, cols_step, rows_step, start_col=start_col, start_row=start_row)
    red_data = GdalUtil.read_block_data(dataset, 3, cols_step, rows_step, start_col=start_col, start_row=start_row)
    ndvi = (nir_data - red_data) / (nir_data + red_data)
    ndvi[(ndvi > 1.5) | (ndvi < -1)] = 0
    return ndvi
定义主函数
if __name__ == "__main__":
    input_file = r'D:\originalData\GF1\namucuo2021.tif'
    output_file = r'D:\originalData\GF1\namucuo2021_ndvi.tif'
    method = 'joblib'
    # method = 'multiprocessing'
    # 获取文件主要信息
    raster_cols, raster_rows = GdalUtil.get_file_size(input_file)
    geotransform = GdalUtil.get_file_geotransform(input_file)
    project = GdalUtil.get_file_proj(input_file)
    # 定义分块大小
    rows_block_size = 50
    cols_block_size = 50
    multi = []
    for j in range(0, raster_rows, rows_block_size):
        for i in range(0, raster_cols, cols_block_size):
            if j + rows_block_size < raster_rows:
                rows_step = rows_block_size
            else:
                rows_step = raster_rows - j
            # 数据横向步长
            if i + cols_block_size < raster_cols:
                cols_step = cols_block_size
            else:
                cols_step = raster_cols - i
            temp_multi = [input_file, i, j, cols_step, rows_step]
            multi.append(temp_multi)
 
    t1 = time.time()
    if method == 'multiprocessing':
        # multiprocessing方法
        pool = Pool(processes=cpu_count()-1)
        # 注意map函数中传入的参数应该是可迭代对象,如list;返回值为list
        res = pool.map(cal_ndvi, multi)
        pool.close()
        pool.join()
    else:
        # joblib方法
        res = Parallel(n_jobs=-1)(delayed(cal_ndvi)(input_list) for input_list in multi)
 
    t2 = time.time()
    print("Total time:" + (t2 - t1).__str__())
 
    # 将multiprocessing中的结果提取出来,放回对应的矩阵位置中
    out_data = np.zeros([raster_rows, raster_cols], dtype='float')
    for result, input_multi in zip(res, multi):
        start_col = input_multi[1]
        start_row = input_multi[2]
        cols_step = input_multi[3]
        rows_step = input_multi[4]
        out_data[start_row:start_row + rows_step, start_col:start_col + cols_step] = result
 
    GdalUtil.write_file(out_data, geotransform, project, output_file)

双重for循环时,两层for循环都使用multiprocessing时会报错,这时可以外层for循环使用joblib方法,内层for循环改为multiprocessing方法,不会报错

到此这篇关于python多线程方法详解的文章就介绍到这了,更多相关python多线程内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python操作xml文件详细介绍
Jun 09 Python
Python的Django REST框架中的序列化及请求和返回
Apr 11 Python
python3.4用函数操作mysql5.7数据库
Jun 23 Python
Anaconda下安装mysql-python的包实例
Jun 11 Python
使用 Visual Studio Code(VSCode)搭建简单的Python+Django开发环境的方法步骤
Dec 17 Python
Python 如何优雅的将数字转化为时间格式的方法
Sep 26 Python
使用 Supervisor 监控 Python3 进程方式
Dec 05 Python
使用Python的Turtle库绘制森林的实例
Dec 18 Python
python程序输出无内容的解决方式
Apr 09 Python
Python virtualenv虚拟环境实现过程解析
Apr 18 Python
在终端启动Python时报错的解决方案
Nov 20 Python
Python之qq自动发消息的示例代码
Feb 18 Python
用Python生成会跳舞的美女
基于Pygame实现简单的贪吃蛇游戏
Dec 06 #Python
Python可变集合和不可变集合的构造方法大全
Dec 06 #Python
Python实现视频中添加音频工具详解
Dec 06 #Python
Python实现GIF动图以及视频卡通化详解
Python实现照片卡通化
用Python爬取英雄联盟的皮肤详细示例
You might like
php读取txt文件并将数据插入到数据库
2016/02/23 PHP
PHP使用Memcache时模拟命名空间及缓存失效问题的解决
2016/02/27 PHP
php利用嵌套数组拼接与解析json的方法
2017/02/07 PHP
传智播客学习之JavaScript基础篇
2009/11/13 Javascript
js购物车实现思路及代码(个人感觉不错)
2013/12/23 Javascript
详解javascript中的事件处理
2015/11/06 Javascript
深入理解jQuery事件绑定
2016/06/02 Javascript
javascript运算符——位运算符全面介绍
2016/07/14 Javascript
JS控制页面跳转时未请求要跳转的地址怎么回事
2016/10/14 Javascript
浅析script标签中的defer与async属性
2016/11/30 Javascript
IScroll那些事_当内容不足时下拉刷新的解决方法
2017/07/18 Javascript
React 组件中的 bind(this)示例代码
2018/09/16 Javascript
JavaScript循环遍历你会用哪些之小结篇
2018/09/28 Javascript
JS跨域请求的问题解析
2018/12/03 Javascript
通过实例了解JS 连续赋值
2019/09/24 Javascript
vue3弹出层V3Popup实例详解
2021/01/04 Vue.js
[01:35]2018年度CS GO最佳战队-完美盛典
2018/12/17 DOTA
Python实现partial改变方法默认参数
2014/08/18 Python
跟老齐学Python之Python安装
2014/09/12 Python
Python实现的直接插入排序算法示例
2018/04/29 Python
python 根据时间来生成唯一的字符串方法
2019/01/14 Python
Django 全局的static和templates的使用详解
2019/07/19 Python
Django中URL的参数传递的实现
2019/08/04 Python
python根据时间获取周数代码实例
2019/09/30 Python
python代码实现将列表中重复元素之间的内容全部滤除
2020/05/22 Python
anaconda3安装及jupyter环境配置全教程
2020/08/24 Python
HEMA英国:荷兰原创设计
2018/08/28 全球购物
加拿大户外探险购物网站:SAIL
2020/06/27 全球购物
金智子午JAVA面试题
2015/09/04 面试题
师生聚会感言
2014/01/26 职场文书
文化宣传方案
2014/03/13 职场文书
单位单身证明样本
2014/10/11 职场文书
公司停电通知
2015/04/15 职场文书
详解NodeJS模块化
2021/06/15 NodeJs
Java中多线程下载图片并压缩能提高效率吗
2021/07/01 Java/Android
前端JavaScript大管家 package.json
2021/11/02 Javascript