python多线程方法详解


Posted in Python onJanuary 18, 2022

处理多个数据和多文件时,使用for循环的速度非常慢,此时需要用多线程来加速运行进度,常用的模块为multiprocess和joblib,下面对两种包我常用的方法进行说明。

1、模块安装

pip install multiprocessing
pip install joblib

2、以分块计算NDVI为例

首先导入需要的包

import numpy as np
from osgeo import gdal
import time
from multiprocessing import cpu_count
from multiprocessing import Pool
from joblib import Parallel, delayed

定义GdalUtil类,以读取遥感数据

class GdalUtil:
    def __init__(self):
        pass
    @staticmethod
    def read_file(raster_file, read_band=None):
        """读取栅格数据"""
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
        # 打开输入图像
        dataset = gdal.Open(raster_file, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_file)
        # 列
        raster_width = dataset.RasterXSize
        # 行
        raster_height = dataset.RasterYSize
        # 读取数据
        if read_band == None:
            data_array = dataset.ReadAsArray(0, 0, raster_width, raster_height)
        else:
            band = dataset.GetRasterBand(read_band)
            data_array = band.ReadAsArray(0, 0, raster_width, raster_height)
        return data_array
 
    @staticmethod
    def read_block_data(dataset, band_num, cols_read, rows_read, start_col=0, start_row=0):
        band = dataset.GetRasterBand(band_num)
        res_data = band.ReadAsArray(start_col, start_row, cols_read, rows_read)
        return res_data
 
    @staticmethod
    def get_raster_band(raster_path):
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
        # 打开输入图像
        dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_path)
        raster_band = dataset.RasterCount
        return raster_band
 
    @staticmethod
    def get_file_size(raster_path):
        """获取栅格仿射变换参数"""
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
 
        # 打开输入图像
        dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_path)
        # 列
        raster_width = dataset.RasterXSize
        # 行
        raster_height = dataset.RasterYSize
        return raster_width, raster_height
 
    @staticmethod
    def get_file_geotransform(raster_path):
        """获取栅格仿射变换参数"""
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
 
        # 打开输入图像
        dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_path)
 
        # 获取输入图像仿射变换参数
        input_geotransform = dataset.GetGeoTransform()
        return input_geotransform
 
    @staticmethod
    def get_file_proj(raster_path):
        """获取栅格图像空间参考"""
        # 注册栅格驱动
        gdal.AllRegister()
        gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
 
        # 打开输入图像
        dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
        if dataset == None:
            print('打开图像{0} 失败.\n', raster_path)
 
        # 获取输入图像空间参考
        input_project = dataset.GetProjection()
        return input_project
 
    @staticmethod
    def write_file(dataset, geotransform, project, output_path, out_format='GTiff', eType=gdal.GDT_Float32):
        """写入栅格"""
        if np.ndim(dataset) == 3:
            out_band, out_rows, out_cols = dataset.shape
        else:
            out_band = 1
            out_rows, out_cols = dataset.shape
 
        # 创建指定输出格式的驱动
        out_driver = gdal.GetDriverByName(out_format)
        if out_driver == None:
            print('格式%s 不支持Creat()方法.\n', out_format)
            return
 
        out_dataset = out_driver.Create(output_path, xsize=out_cols,
                                        ysize=out_rows, bands=out_band,
                                        eType=eType)
        # 设置输出图像的仿射参数
        out_dataset.SetGeoTransform(geotransform)
 
        # 设置输出图像的投影参数
        out_dataset.SetProjection(project)
 
        # 写出数据
        if out_band == 1:
            out_dataset.GetRasterBand(1).WriteArray(dataset)
        else:
            for i in range(out_band):
                out_dataset.GetRasterBand(i + 1).WriteArray(dataset[i])
        del out_dataset

定义计算NDVI的函数

def cal_ndvi(multi):
    '''
    计算高分NDVI
    :param multi:格式为列表,依次包含[遥感文件路径,开始行号,开始列号,待读的行数,待读的列数]
    :return: NDVI数组
    '''
    input_file, start_col, start_row, cols_step, rows_step = multi
    dataset = gdal.Open(input_file, gdal.GA_ReadOnly)
    nir_data = GdalUtil.read_block_data(dataset, 4, cols_step, rows_step, start_col=start_col, start_row=start_row)
    red_data = GdalUtil.read_block_data(dataset, 3, cols_step, rows_step, start_col=start_col, start_row=start_row)
    ndvi = (nir_data - red_data) / (nir_data + red_data)
    ndvi[(ndvi > 1.5) | (ndvi < -1)] = 0
    return ndvi
定义主函数
if __name__ == "__main__":
    input_file = r'D:\originalData\GF1\namucuo2021.tif'
    output_file = r'D:\originalData\GF1\namucuo2021_ndvi.tif'
    method = 'joblib'
    # method = 'multiprocessing'
    # 获取文件主要信息
    raster_cols, raster_rows = GdalUtil.get_file_size(input_file)
    geotransform = GdalUtil.get_file_geotransform(input_file)
    project = GdalUtil.get_file_proj(input_file)
    # 定义分块大小
    rows_block_size = 50
    cols_block_size = 50
    multi = []
    for j in range(0, raster_rows, rows_block_size):
        for i in range(0, raster_cols, cols_block_size):
            if j + rows_block_size < raster_rows:
                rows_step = rows_block_size
            else:
                rows_step = raster_rows - j
            # 数据横向步长
            if i + cols_block_size < raster_cols:
                cols_step = cols_block_size
            else:
                cols_step = raster_cols - i
            temp_multi = [input_file, i, j, cols_step, rows_step]
            multi.append(temp_multi)
 
    t1 = time.time()
    if method == 'multiprocessing':
        # multiprocessing方法
        pool = Pool(processes=cpu_count()-1)
        # 注意map函数中传入的参数应该是可迭代对象,如list;返回值为list
        res = pool.map(cal_ndvi, multi)
        pool.close()
        pool.join()
    else:
        # joblib方法
        res = Parallel(n_jobs=-1)(delayed(cal_ndvi)(input_list) for input_list in multi)
 
    t2 = time.time()
    print("Total time:" + (t2 - t1).__str__())
 
    # 将multiprocessing中的结果提取出来,放回对应的矩阵位置中
    out_data = np.zeros([raster_rows, raster_cols], dtype='float')
    for result, input_multi in zip(res, multi):
        start_col = input_multi[1]
        start_row = input_multi[2]
        cols_step = input_multi[3]
        rows_step = input_multi[4]
        out_data[start_row:start_row + rows_step, start_col:start_col + cols_step] = result
 
    GdalUtil.write_file(out_data, geotransform, project, output_file)

双重for循环时,两层for循环都使用multiprocessing时会报错,这时可以外层for循环使用joblib方法,内层for循环改为multiprocessing方法,不会报错

到此这篇关于python多线程方法详解的文章就介绍到这了,更多相关python多线程内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 正则表达式入门(初级篇)
Dec 07 Python
Python实现PS滤镜功能之波浪特效示例
Jan 26 Python
pandas按若干个列的组合条件筛选数据的方法
Apr 11 Python
python中datetime模块中strftime/strptime函数的使用
Jul 03 Python
Python3实现的旋转矩阵图像算法示例
Apr 03 Python
python中的print()输出
Apr 12 Python
详解Python传入参数的几种方法
May 16 Python
Django自定义列表 models字段显示方式
Apr 03 Python
Python socket服务常用操作代码实例
Jun 22 Python
Selenium alert 弹窗处理的示例代码
Aug 06 Python
anaconda升级sklearn版本的实现方法
Feb 22 Python
基于PyQt5制作一个群发邮件工具
Apr 08 Python
用Python生成会跳舞的美女
基于Pygame实现简单的贪吃蛇游戏
Dec 06 #Python
Python可变集合和不可变集合的构造方法大全
Dec 06 #Python
Python实现视频中添加音频工具详解
Dec 06 #Python
Python实现GIF动图以及视频卡通化详解
Python实现照片卡通化
用Python爬取英雄联盟的皮肤详细示例
You might like
ASP和PHP都是可以删除自身的
2007/04/09 PHP
PHP反射类ReflectionClass和ReflectionObject的使用方法
2013/11/13 PHP
php 删除cookie方法详解
2014/12/01 PHP
基于JQuery的Select选择框的华丽变身
2011/08/23 Javascript
js网页版计算器的简单实现
2013/07/02 Javascript
jQuery中filter()和find()的区别深入了解
2013/09/25 Javascript
javascript写的一个模拟阅读小说的程序
2014/04/04 Javascript
jquery加载图片时以淡入方式显示的方法
2015/01/14 Javascript
JQuery boxy插件在IE中边角图片不显示问题的解决
2015/05/20 Javascript
JS中dom0级事件和dom2级事件的区别介绍
2016/05/05 Javascript
javascript判断图片是否加载完成的方法推荐
2016/05/13 Javascript
微信小程序 Record API详解及实例代码
2016/09/30 Javascript
利用Chrome DevTools直接调试Node.js和JavaScript的方法详解(并行)
2017/02/16 Javascript
使用Vue.js和Flask来构建一个单页的App的示例
2018/03/21 Javascript
vue.js实现h5机器人聊天(测试版)
2020/07/16 Javascript
[45:14]Optic vs VP 2018国际邀请赛淘汰赛BO3 第二场 8.24
2018/08/25 DOTA
Python ldap实现登录实例代码
2016/09/30 Python
Python动态语言与鸭子类型详解
2019/07/01 Python
python3.7环境下安装Anaconda的教程图解
2019/09/10 Python
详解使用Python下载文件的几种方法
2019/10/13 Python
解决Python pip 自动更新升级失败的问题
2020/02/21 Python
django实现更改数据库某个字段以及字段段内数据
2020/03/31 Python
Python之字典添加元素的几种方法
2020/09/30 Python
浅谈CSS3特性查询(Feature Query: @supports)功能简介
2017/07/31 HTML / CSS
玩具反斗城葡萄牙官方商城:Toys"R"Us葡萄牙
2016/10/21 全球购物
Lancome兰蔻官方旗舰店:来自法国的世界知名美妆品牌
2018/06/14 全球购物
JSF的标签库有哪些
2012/04/27 面试题
幼师专业求职推荐信
2013/11/08 职场文书
办公室内勤岗位职责范本
2013/12/09 职场文书
奥巴马获胜演讲稿
2014/05/15 职场文书
售后服务承诺书模板
2014/05/21 职场文书
新员工考核评语
2014/12/31 职场文书
2015年五四青年节活动总结
2015/02/10 职场文书
就业导师推荐信范文
2015/03/27 职场文书
张丽莉观后感
2015/06/16 职场文书
win11自动弹出虚拟键盘怎么关闭? Win11关闭虚拟键盘的技巧
2023/01/09 数码科技