Python Gluon参数和模块命名操作教程


Posted in Python onDecember 18, 2019

本文实例讲述了Python Gluon参数和模块命名操作。分享给大家供大家参考,具体如下:

Gluon参数和模块命名教程

在gluon里,每个参数和块都有一个名字(和前缀)。参数名可以由用户指定,block名也可以由用户指定,也可以自动创建。

本教程中,我们将讨论命名方面的最佳实践。首先,import MXNet和Gluon

from __future__ import print_function
import mxnet as mx
from mxnet import gluon

Blocks命名

在创建block时,可以指定一个前缀给它:

mydense = gluon.nn.Dense(100, prefix='mydense_')
print(mydense.prefix)
mydense_

若没有指定前缀,gluon会自动生成一个前缀

dense0 = gluon.nn.Dense(100)
print(dense0.prefix)
dense0_

当你创建更多同类块时,它们将递增后缀命名,以避免冲突:

dense1 = gluon.nn.Dense(100)
print(dense1.prefix)
dense1_

参数命名

blocks中的参数将用过将block的前缀添加到参数的名称来命名:

print(dense0.collect_params())
dense0_ (
 Parameter dense0_weight (shape=(100, 0), dtype=<type 'numpy.float32'>)
 Parameter dense0_bias (shape=(100,), dtype=<type 'numpy.float32'>)
)

名称空间

为了管理嵌套block的名称,每个块附加有一个name_scope(名称空间)。在name_scope中创建的block都会在其名称前加上父block的名称。

我们将定义一个简单的神经网络来说明这点:

class Model(gluon.Block):
 def __init__(self, **kwargs):
  super(Model, self).__init__(**kwargs)
  with self.name_scope():
   self.dense0 = gluon.nn.Dense(20)
   self.dense1 = gluon.nn.Dense(20)
   self.mydense = gluon.nn.Dense(20, prefix='mydense_')
 def forward(self, x):
  x = mx.nd.relu(self.dense0(x))
  x = mx.nd.relu(self.dense1(x))
  return mx.nd.relu(self.mydense(x))

现在实例化这个神经网络

  • 注意:model0.dense0的名称是model0_dense0_而非dense0_
  • 注意:我们指定model.mydense的前缀为mydense_,它的父类前缀会自动生成并添加到前面变成model0_mydense_

这里的名称前缀和变量名model0没有关系,这里就算把model0换成其他变量名比如net,前缀还是model?,? 表示这是一个递增的数字,这里的名称前缀和class Model有关 若将类名Model换成Hodel,那么后面的前缀都会变成 hodel?

model0 = Model()
model0.initialize()
model0(mx.nd.zeros((1, 20)))
print(model0.prefix)
print(model0.dense0.prefix)
print(model0.dense1.prefix)
print(model0.mydense.prefix)
model0_
model0_dense0_
model0_dense1_
model0_mydense_

若我们再次实例化Model,在Dense前会生成一个不同的名称。

  • 注意:model1.dense0的名称依然是dense0_而非dense2_,遵循之前在model0中创建的dense层的命名规则。这是因为每个model的命名空间是相互独立
model1 = Model()
print(model1.prefix)
print(model1.dense0.prefix)
print(model1.dense1.prefix)
print(model1.mydense.prefix)
model1_
model1_dense0_
model1_dense1_
model1_mydense_

建议手动为顶层的model指定一个前缀,即model = Model(prefix=‘mymodel_'),以避免命名时可能出现的混淆。

相同的规则同样适用于像Sequential这类容器block.name_scope 既可以在__init__内使用,也可以在__init__ 外使用:

注意:这里Sequential也有参数prefix,是可以自己指定名称的,不指定的话就叫Sequential

net = gluon.nn.Sequential()
with net.name_scope():
 net.add(gluon.nn.Dense(20))
 net.add(gluon.nn.Dense(20))
print(net.prefix)
print(net[0].prefix)
print(net[1].prefix)
sequential0_
sequential0_dense0_
sequential0_dense1_

gluon.model_zoo也一样

net = gluon.nn.Sequential()
with net.name_scope():
 net.add(gluon.model_zoo.vision.alexnet(pretrained=True))
 net.add(gluon.model_zoo.vision.alexnet(pretrained=True))
print(net.prefix, net[0].prefix, net[1].prefix)
sequential1_ sequential1_alexnet0_ sequential1_alexnet1_

保存和载入

由于model0和model1有不同的前缀,所以它们的参数是有不同名字的:

print(model0.collect_params(), '\n')
print(model1.collect_params())
model0_ (
 Parameter model0_dense0_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>)
 Parameter model0_dense0_bias (shape=(20L,), dtype=<type 'numpy.float32'>)
 Parameter model0_dense1_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>)
 Parameter model0_dense1_bias (shape=(20L,), dtype=<type 'numpy.float32'>)
 Parameter model0_mydense_weight (shape=(20L, 20L), dtype=<type 'numpy.float32'>)
 Parameter model0_mydense_bias (shape=(20L,), dtype=<type 'numpy.float32'>)
) 
model1_ (
 Parameter model1_dense0_weight (shape=(20, 0), dtype=<type 'numpy.float32'>)
 Parameter model1_dense0_bias (shape=(20,), dtype=<type 'numpy.float32'>)
 Parameter model1_dense1_weight (shape=(20, 0), dtype=<type 'numpy.float32'>)
 Parameter model1_dense1_bias (shape=(20,), dtype=<type 'numpy.float32'>)
 Parameter model1_mydense_weight (shape=(20, 0), dtype=<type 'numpy.float32'>)
 Parameter model1_mydense_bias (shape=(20,), dtype=<type 'numpy.float32'>)
)

若你尝试将model0的参数载入到model1中,你将会得到一个名称不匹配的错误

model0.collect_params().save('model.params')
try:
 model1.collect_params().load('model.params', mx.cpu())
except Exception as e:
 print(e)

Parameter 'model1_dense0_weight' is missing in file 'model.params', which contains parameters: 'model0_mydense_weight', 'model0_dense1_bias', 'model0_dense1_weight', 'model0_dense0_weight', 'model0_dense0_bias', 'model0_mydense_bias'. Please make sure source and target networks have the same prefix.

为了解决这个问题,我们使用save_parameters/load_parameters而不是 collect_paramssave/load. save_parameters。使用模型结构而非参数名称来匹配参数。

model0.save_parameters('model.params')
model1.load_parameters('model.params')
print(mx.nd.load('model.params').keys())
['dense0.bias', 'mydense.bias', 'dense1.bias', 'dense1.weight', 'dense0.weight', 'mydense.weight']

替换网络中的block并进行fine-turning

有时需要加载一些预训练的模型,并替换其中某些block并进行fine-turning。

For example, the alexnet in model zoo has 1000 output dimensions, but maybe you only have 100 classes in your application.

例如,alexnet有1000个输出维度但你只有100类。

我们首先载入预训练的AlexNet

  • 在Gluon Model Zoo,所有图像分类模型的格式都是特征提取层叫 features ,输出层叫 output.
  • 注意到输出层是一个dense block,有1000个维度的输出
alexnet = gluon.model_zoo.vision.alexnet(pretrained=True)
print(alexnet.output)
print(alexnet.output.prefix)
Dense(4096 -> 1000, linear)
alexnet0_dense2_

改变输出为100维,使用一个新block替换它

with alexnet.name_scope():
 alexnet.output = gluon.nn.Dense(100)
alexnet.output.initialize()
print(alexnet.output)
print(alexnet.output.prefix)
Dense(None -> 100, linear)
alexnet0_dense3_

原文:http://mxnet.incubator.apache.org/versions/master/tutorials/gluon/naming.html

更多关于Python相关内容可查看本站专题:《Python数学运算技巧总结》、《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
python数据结构之图的实现方法
Jul 08 Python
python判断字符串编码的简单实现方法(使用chardet)
Jul 01 Python
Python实现视频下载功能
Mar 14 Python
python基础while循环及if判断的实例讲解
Aug 25 Python
python 递归遍历文件夹,并打印满足条件的文件路径实例
Aug 30 Python
在python中对变量判断是否为None的三种方法总结
Jan 23 Python
详解Python使用Plotly绘图工具,绘制甘特图
Apr 02 Python
python实现得到当前登录用户信息的方法
Jun 21 Python
Linux下升级安装python3.8并配置pip及yum的教程
Jan 02 Python
python numpy库linspace相同间隔采样的实现
Feb 25 Python
Python开发之身份证验证库id_validator验证身份证号合法性及根据身份证号返回住址年龄等信息
Mar 20 Python
Python+OpenCV实现图片中的圆形检测
Apr 07 Python
python turtle 绘制太极图的实例
Dec 18 #Python
Python使用gluon/mxnet模块实现的mnist手写数字识别功能完整示例
Dec 18 #Python
简单了解Python读取大文件代码实例
Dec 18 #Python
python 比较2张图片的相似度的方法示例
Dec 18 #Python
使用Python的Turtle库绘制森林的实例
Dec 18 #Python
python3 requests库实现多图片爬取教程
Dec 18 #Python
在notepad++中实现直接运行python代码
Dec 18 #Python
You might like
php学习之 循环结构实现代码
2011/06/09 PHP
php中使用Akismet防止垃圾评论的代码
2011/06/10 PHP
PHP把小数转成整数3种方法
2014/06/30 PHP
PHP简单获取视频预览图的方法
2015/03/12 PHP
PHP+jquery+CSS制作头像登录窗(仿QQ登陆)
2016/10/20 PHP
用Javascript数组处理多个字符串的连接问题
2009/08/20 Javascript
使用Java实现简单的server/client回显功能的方法介绍
2013/05/03 Javascript
JS实现图片放大镜效果的方法
2015/02/27 Javascript
浅析AngularJS中的生命周期和延迟处理
2015/06/18 Javascript
jquery实现用户信息修改验证输入方法汇总
2015/07/18 Javascript
jQuery中通过ajax的get()函数读取页面的方法
2016/02/29 Javascript
Highcharts入门之基本属性
2016/08/02 Javascript
JS判断是否在微信浏览器打开的简单实例(推荐)
2016/08/24 Javascript
JS多文件上传的实例代码
2017/01/11 Javascript
JavaScript用二分法查找数据的实例代码
2017/06/17 Javascript
基于zTree树形菜单的使用实例
2017/12/25 Javascript
js限制input只能输入有效的数字(第一个不能是小数点)
2018/09/28 Javascript
vue项目上传Github预览的实现示例
2018/11/06 Javascript
微信小程序返回上一页传参并刷新过程解析
2019/12/13 Javascript
es6函数中的作用域实例分析
2020/04/18 Javascript
[30:55]完美世界DOTA2联赛PWL S2 Magma vs LBZS 第二场 11.18
2020/11/18 DOTA
python迭代器与生成器详解
2016/03/10 Python
Pandas删除数据的几种情况(小结)
2019/06/21 Python
python 中如何获取列表的索引
2019/07/02 Python
女大学生自我鉴定
2013/12/09 职场文书
欢送退休感言
2014/02/08 职场文书
学习党的群众路线教育实践活动心得体会
2014/03/01 职场文书
文明礼仪伴我行演讲稿
2014/05/12 职场文书
大学毕业生求职自荐书
2014/06/05 职场文书
建筑结构施工求职信
2014/07/11 职场文书
妈妈活动方案
2014/08/15 职场文书
小学秋季运动会报道稿
2014/09/30 职场文书
个人租房协议书样本
2014/10/01 职场文书
投标承诺函格式
2015/01/21 职场文书
质检员岗位职责范本
2015/04/07 职场文书
python保存图片的四个常用方法
2022/02/28 Python