tensorflow1.0学习之模型的保存与恢复(Saver)


Posted in Python onApril 23, 2018

将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情。tf里面提供模型保存的是tf.train.Saver()模块。

模型保存,先要创建一个Saver对象:如

saver=tf.train.Saver()

在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型。如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,如:

saver=tf.train.Saver(max_to_keep=0)

但是这样做除了多占用硬盘,并没有实际多大的用处,因此不推荐。

当然,如果你只想保存最后一代的模型,则只需要将max_to_keep设置为1即可,即

saver=tf.train.Saver(max_to_keep=1)

创建完saver对象后,就可以保存训练好的模型了,如:

saver.save(sess,'ckpt/mnist.ckpt',global_step=step)

第一个参数sess,这个就不用说了。第二个参数设定保存的路径和名字,第三个参数将训练的次数作为后缀加入到模型名字中。

saver.save(sess, 'my-model', global_step=0) ==>      filename: 'my-model-0'
 ...
 saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

看一个mnist实例:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 4 10:29:48 2017

@author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x, 
           units=1024, 
           activation=tf.nn.relu,
           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
           kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1, 
           units=512, 
           activation=tf.nn.relu,
           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
           kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2, 
            units=10, 
            activation=None,
            kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
            kernel_regularizer=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)  
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())

saver=tf.train.Saver(max_to_keep=1)
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()

代码中红色部分就是保存模型的代码,虽然我在每训练完一代的时候,都进行了保存,但后一次保存的模型会覆盖前一次的,最终只会保存最后一次。因此我们可以节省时间,将保存代码放到循环之外(仅适用max_to_keep=1,否则还是需要放在循环内).

在实验中,最后一代可能并不是验证精度最高的一代,因此我们并不想默认保存最后一代,而是想保存验证精度最高的一代,则加个中间变量和判断语句就可以了。

saver=tf.train.Saver(max_to_keep=1)
max_acc=0
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 if val_acc>max_acc:
   max_acc=val_acc
   saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()

如果我们想保存验证精度最高的三代,且把每次的验证精度也随之保存下来,则我们可以生成一个txt文件用于保存。

saver=tf.train.Saver(max_to_keep=3)
max_acc=0
f=open('ckpt/acc.txt','w')
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
 if val_acc>max_acc:
   max_acc=val_acc
   saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
f.close()
sess.close()

模型的恢复用的是restore()函数,它需要两个参数restore(sess, save_path),save_path指的是保存的模型路径。我们可以使用tf.train.latest_checkpoint()来自动获取最后一次保存的模型。如:

model_file=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_file)

则程序后半段代码我们可以改为:

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())
is_train=False
saver=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
  max_acc=0
  f=open('ckpt/acc.txt','w')
  for i in range(100):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
   val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
   print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
   f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
   if val_acc>max_acc:
     max_acc=val_acc
     saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
  f.close()

#验证阶段
else:
  model_file=tf.train.latest_checkpoint('ckpt/')
  saver.restore(sess,model_file)
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print('val_loss:%f, val_acc:%f'%(val_loss,val_acc))
sess.close()

标红的地方,就是与保存、恢复模型相关的代码。用一个bool型变量is_train来控制训练和验证两个阶段。

整个源程序:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 4 10:29:48 2017

@author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x, 
           units=1024, 
           activation=tf.nn.relu,
           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
           kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1, 
           units=512, 
           activation=tf.nn.relu,
           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
           kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2, 
            units=10, 
            activation=None,
            kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
            kernel_regularizer=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)  
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())

is_train=True
saver=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
  max_acc=0
  f=open('ckpt/acc.txt','w')
  for i in range(100):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
   val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
   print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
   f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
   if val_acc>max_acc:
     max_acc=val_acc
     saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
  f.close()

#验证阶段
else:
  model_file=tf.train.latest_checkpoint('ckpt/')
  saver.restore(sess,model_file)
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print('val_loss:%f, val_acc:%f'%(val_loss,val_acc))
sess.close()

参考文章:https://3water.com/article/138779.htm

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python基础教程之循环介绍
Aug 29 Python
python实现搜索本地文件信息写入文件的方法
Feb 22 Python
运行django项目指定IP和端口的方法
May 14 Python
Python实现多线程的两种方式分析
Aug 29 Python
Python并行分布式框架Celery详解
Oct 15 Python
python使用wxpy轻松实现微信防撤回的方法
Feb 21 Python
浅谈PySpark SQL 相关知识介绍
Jun 14 Python
numpy.meshgrid()理解(小结)
Aug 01 Python
对python中的os.getpid()和os.fork()函数详解
Aug 08 Python
python爬虫学习笔记之pyquery模块基本用法详解
Apr 09 Python
keras训练浅层卷积网络并保存和加载模型实例
Jul 02 Python
pytest实现多进程与多线程运行超好用的插件
Jul 15 Python
tensorflow 使用flags定义命令行参数的方法
Apr 23 #Python
Tensorflow之Saver的用法详解
Apr 23 #Python
python获取文件路径、文件名、后缀名的实例
Apr 23 #Python
Python基于FTP模块实现ftp文件上传操作示例
Apr 23 #Python
Python基于whois模块简单识别网站域名及所有者的方法
Apr 23 #Python
Python实现自定义顺序、排列写入数据到Excel的方法
Apr 23 #Python
python 获取指定文件夹下所有文件名称并写入列表的实例
Apr 23 #Python
You might like
DC《神奇女侠2》因疫情推迟上映 温子仁新恐怖片《恶性》撤档
2020/04/09 欧美动漫
PHP微信开发之微信消息自动回复下所遇到的坑
2016/05/09 PHP
php利用gd库为图片添加水印
2016/11/09 PHP
laravel5.1 ajax post 传值_token示例
2019/10/24 PHP
Javascript 对象的解释
2008/11/24 Javascript
JS array 数组详解
2009/03/22 Javascript
用JQuery调用Session的实现代码
2010/10/29 Javascript
javascript判断是否按回车键并解决浏览器之间的差异
2014/05/13 Javascript
nodejs 整合kindEditor实现图片上传
2015/02/03 NodeJs
AngularJs 60分钟入门基础教程
2016/04/03 Javascript
JavaScript_ECMA5数组新特性详解
2016/06/12 Javascript
vue router使用query和params传参的使用和区别
2017/11/13 Javascript
JavaScript实现写入文件到本地的方法【基于FileSaver.js插件】
2018/03/15 Javascript
jQuery实现动态添加和删除input框代码实例
2019/03/29 jQuery
vue3.0中的双向数据绑定方法及优缺点
2019/08/01 Javascript
mpvue 页面预加载新增preLoad生命周期的两种方式
2019/10/17 Javascript
[03:26]回顾2015国际邀请赛中国区预选赛
2015/06/09 DOTA
使用Python中的cookielib模拟登录网站
2015/04/09 Python
Python 调用PIL库失败的解决方法
2019/01/08 Python
Python树莓派学习笔记之UDP传输视频帧操作详解
2019/11/15 Python
把vgg-face.mat权重迁移到pytorch模型示例
2019/12/27 Python
pycharm的python_stubs问题
2020/04/08 Python
python动态规划算法实例详解
2020/11/22 Python
TripAdvisor土耳其网站:全球知名旅行社区,真实旅客评论
2017/04/17 全球购物
以设计师精品品质提供快速时尚:PopJulia
2018/01/09 全球购物
中软Java笔试题
2012/11/11 面试题
德尔福集团DELPHI的笔试题
2012/02/22 面试题
如何写好优秀的创业计划书
2014/01/30 职场文书
低碳环保演讲稿
2014/08/28 职场文书
新郎婚礼答谢词
2015/01/04 职场文书
中学生运动会广播稿
2015/08/19 职场文书
大学生团支书竞选稿
2015/11/21 职场文书
创业计划书之便利店
2019/09/05 职场文书
Python Pygame实战之塔防游戏的实现
2022/03/17 Python
动画「进击的巨人」第86话播出感谢绘公开
2022/03/21 日漫
WCG2010 星际争霸决赛 Flash vs Goojila 1 星际经典比赛回顾
2022/04/01 星际争霸