tensorflow1.0学习之模型的保存与恢复(Saver)


Posted in Python onApril 23, 2018

将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情。tf里面提供模型保存的是tf.train.Saver()模块。

模型保存,先要创建一个Saver对象:如

saver=tf.train.Saver()

在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型。如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,如:

saver=tf.train.Saver(max_to_keep=0)

但是这样做除了多占用硬盘,并没有实际多大的用处,因此不推荐。

当然,如果你只想保存最后一代的模型,则只需要将max_to_keep设置为1即可,即

saver=tf.train.Saver(max_to_keep=1)

创建完saver对象后,就可以保存训练好的模型了,如:

saver.save(sess,'ckpt/mnist.ckpt',global_step=step)

第一个参数sess,这个就不用说了。第二个参数设定保存的路径和名字,第三个参数将训练的次数作为后缀加入到模型名字中。

saver.save(sess, 'my-model', global_step=0) ==>      filename: 'my-model-0'
 ...
 saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

看一个mnist实例:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 4 10:29:48 2017

@author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x, 
           units=1024, 
           activation=tf.nn.relu,
           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
           kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1, 
           units=512, 
           activation=tf.nn.relu,
           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
           kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2, 
            units=10, 
            activation=None,
            kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
            kernel_regularizer=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)  
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())

saver=tf.train.Saver(max_to_keep=1)
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()

代码中红色部分就是保存模型的代码,虽然我在每训练完一代的时候,都进行了保存,但后一次保存的模型会覆盖前一次的,最终只会保存最后一次。因此我们可以节省时间,将保存代码放到循环之外(仅适用max_to_keep=1,否则还是需要放在循环内).

在实验中,最后一代可能并不是验证精度最高的一代,因此我们并不想默认保存最后一代,而是想保存验证精度最高的一代,则加个中间变量和判断语句就可以了。

saver=tf.train.Saver(max_to_keep=1)
max_acc=0
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 if val_acc>max_acc:
   max_acc=val_acc
   saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()

如果我们想保存验证精度最高的三代,且把每次的验证精度也随之保存下来,则我们可以生成一个txt文件用于保存。

saver=tf.train.Saver(max_to_keep=3)
max_acc=0
f=open('ckpt/acc.txt','w')
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
 if val_acc>max_acc:
   max_acc=val_acc
   saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
f.close()
sess.close()

模型的恢复用的是restore()函数,它需要两个参数restore(sess, save_path),save_path指的是保存的模型路径。我们可以使用tf.train.latest_checkpoint()来自动获取最后一次保存的模型。如:

model_file=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_file)

则程序后半段代码我们可以改为:

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())
is_train=False
saver=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
  max_acc=0
  f=open('ckpt/acc.txt','w')
  for i in range(100):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
   val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
   print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
   f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
   if val_acc>max_acc:
     max_acc=val_acc
     saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
  f.close()

#验证阶段
else:
  model_file=tf.train.latest_checkpoint('ckpt/')
  saver.restore(sess,model_file)
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print('val_loss:%f, val_acc:%f'%(val_loss,val_acc))
sess.close()

标红的地方,就是与保存、恢复模型相关的代码。用一个bool型变量is_train来控制训练和验证两个阶段。

整个源程序:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 4 10:29:48 2017

@author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x, 
           units=1024, 
           activation=tf.nn.relu,
           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
           kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1, 
           units=512, 
           activation=tf.nn.relu,
           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
           kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2, 
            units=10, 
            activation=None,
            kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
            kernel_regularizer=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_)  
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())

is_train=True
saver=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
  max_acc=0
  f=open('ckpt/acc.txt','w')
  for i in range(100):
   batch_xs, batch_ys = mnist.train.next_batch(100)
   sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
   val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
   print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
   f.write(str(i+1)+', val_acc: '+str(val_acc)+'\n')
   if val_acc>max_acc:
     max_acc=val_acc
     saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
  f.close()

#验证阶段
else:
  model_file=tf.train.latest_checkpoint('ckpt/')
  saver.restore(sess,model_file)
  val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
  print('val_loss:%f, val_acc:%f'%(val_loss,val_acc))
sess.close()

参考文章:https://3water.com/article/138779.htm

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python发送Email方法实例
Aug 21 Python
pygame学习笔记(5):游戏精灵
Apr 15 Python
详解Python中列表和元祖的使用方法
Apr 25 Python
利用python实现简单的循环购物车功能示例代码
Jul 05 Python
python tkinter界面居中显示的方法
Oct 11 Python
python3 json数据格式的转换(dumps/loads的使用、dict to str/str to dict、json字符串/字典的相互转换)
Apr 01 Python
Python 实现还原已撤回的微信消息
Jun 18 Python
基于python实现的百度新歌榜、热歌榜下载器(附代码)
Aug 05 Python
python多线程同步之文件读写控制
Feb 25 Python
python图像处理模块Pillow的学习详解
Oct 09 Python
如何在python中写hive脚本
Nov 08 Python
Python 求向量的余弦值操作
Mar 04 Python
tensorflow 使用flags定义命令行参数的方法
Apr 23 #Python
Tensorflow之Saver的用法详解
Apr 23 #Python
python获取文件路径、文件名、后缀名的实例
Apr 23 #Python
Python基于FTP模块实现ftp文件上传操作示例
Apr 23 #Python
Python基于whois模块简单识别网站域名及所有者的方法
Apr 23 #Python
Python实现自定义顺序、排列写入数据到Excel的方法
Apr 23 #Python
python 获取指定文件夹下所有文件名称并写入列表的实例
Apr 23 #Python
You might like
php去除换行(回车换行)的三种方法
2014/03/26 PHP
php命令行(cli)下执行PHP脚本文件的相对路径的问题解决方法
2015/05/25 PHP
PHP获取日期对应星期、一周日期、星期开始与结束日期的方法
2018/06/22 PHP
Thinkphp整合阿里云OSS图片上传实例代码
2019/04/28 PHP
安装docker和docker-compose实例详解
2019/07/30 PHP
动态加载js文件 document.createElement
2006/10/14 Javascript
javascript Array对象基础知识小结
2010/11/16 Javascript
jQuery学习基础知识小结
2010/11/25 Javascript
获取offsetTop和offsetLeft值的js代码(兼容)
2013/04/16 Javascript
用js传递value默认值的示例代码
2014/09/11 Javascript
js实现div弹出层的方法
2014/11/20 Javascript
Javascript学习笔记之数组的遍历和 length 属性
2014/11/23 Javascript
JavaScritp添加url参数并将参数加入到url中及更改url参数的方法
2015/10/26 Javascript
2016年最热门的15 款代码语法高亮工具,美化你的代码
2016/01/06 Javascript
使用javascript插入样式
2016/03/14 Javascript
微信小程序 Storage API实例详解
2016/10/02 Javascript
JS控制TreeView的结点选择
2016/11/11 Javascript
javascript简单链式调用案例分析
2017/05/10 Javascript
AngularJs用户登录问题处理(交互及验证、阻止FQ处理)
2017/10/26 Javascript
javascript实现数字配对游戏的实例讲解
2017/12/14 Javascript
vue-cli初始化项目中使用less的方法
2018/08/09 Javascript
JavaScript中创建原子的方法总结
2018/08/26 Javascript
JS实现倒计时图文效果
2018/11/17 Javascript
js打开word文档预览操作示例【不是下载】
2019/05/23 Javascript
从零撸一个pc端vue的ui组件库( 计数器组件 )
2019/08/08 Javascript
解决Python一行输出不显示的问题
2018/12/03 Python
Python正则表达式匹配日期与时间的方法
2019/07/07 Python
Python Unittest原理及基本使用方法
2020/11/06 Python
matplotlib之pyplot模块坐标轴标签设置使用(xlabel()、ylabel())
2021/02/22 Python
利用html5 canvas动态画饼状图的示例代码
2018/04/02 HTML / CSS
澳大利亚在线百货商店:Real Smart
2017/08/13 全球购物
如何用JQuery进行表单验证
2013/05/29 面试题
大学毕业后的十年规划
2014/01/07 职场文书
给校长的建议书范文
2015/09/14 职场文书
小学班长竞选稿
2015/11/20 职场文书
python基于opencv批量生成验证码的示例
2021/04/28 Python