python实现动态数组的示例代码


Posted in Python onJuly 15, 2019

实现一个支持动态扩容的数组并完成其增删改查

#通过python实现动态数组
 
"""
数组特点:
  占用一段连续的内存空间,支持随机(索引)访问,且时间复杂度为O(1)
  添加元素时间复杂度:O(n)
  删除元素时间复杂度:O(n)
"""
 
class Arr:
  def __init__(self, capacity=10):
    """
    构造函数
    :param capacity: 数组最大容量,不指定的话默认为10
    """
    self._capacity = capacity
    self._size = 0                 # 数组有效元素的数目,初始化为0
    self._data = [None] * self._capacity  # 由于python的list是动态扩展的,而我们要实现底层具有固定容量、占用一段连续的内存空间的数组,所以用None来作为无效元素的标识
 
  def __getitem__(self, item):
    """让Arr类支持索引操作"""
    return self._data[item]
 
  def getSize(self):
    """返回数组有效元素的个数"""
    return self._size
 
  def getCapacity(self):
    """返回当前数组的容量"""
    return self._capacity
 
  def isEmpty(self):
    """判断当前数组是否为空"""
    return self._size == 0
 
  def add(self, index, elem):
    """
    向数组中添加一个元素,注意数组占用的是一段连续的内存空间,所以在添加元素后,数组还是要保证这个特点的,因此需要将后面的元素都向后挪一个位置,而且要注意要先从
    尾部开始挪,防止元素之间的覆盖
    时间复杂度:O(n)
    :param index:  添加的元素所在的索引
    :param elem:  所要添加的元素
    """
    if index < 0 or index > self._size:   # 插入的位置无效
      raise Exception('Add Filed. Require 0 <= index <= self._size')
    if self._size == self._capacity:    # 满了
      self._resize(self._capacity * 2)  # 默认扩容当前容量的二倍。容量翻倍要比容量加上一个固定值要好,这样做均摊复杂度为O(1)。具体请百度
 
    for i in range(self._size - 1, index - 1, -1): # 从尾部开始挪动元素,在index处腾出一个空间
                            # 一定要注意在步长为负数的情况下,区间是左开右闭区间,即(index, self._size - 1],所以是index-1,与正常的左闭右开区间是相反的!
      self._data[i + 1] = self._data[i]
    self._data[index] = elem    # 将该位置赋值为elem
    self._size += 1         # 数组有效元素数加1
 
  def addLast(self, elem):
    """
    向数组尾部添加元素
    时间复杂度:O(1)
    :param elem: 所要添加的元素
    """
    self.add(self._size, elem) # 直接调用add方法,注意不用再次判定合法性了,因为add函数中已经判断过了
 
  def addFirst(self, elem):
    """
    想数组头部添加元素
    时间复杂度:O(n)
    :param elem: 所要添加的元素
    """
    self.add(0, elem)  # 同理直接调用add方法
 
  def get(self, index):
    """
    获得索引index处的元素
    时间复杂度:O(1)
    :param index: 数组索引
    :return:   数组索引处的值
    """
    if index < 0 or index >= self._size:    # 判断index的合法性
      raise Exception('Get failed. Index is illegal.')
    return self._data[index]
 
  def getFirst(self):
    """
    获得数组首位置元素的值
    :return: 首位置元素的值
    """
    return self.get(0)   # 直接调用get函数,安全可靠
 
  def getLast(self):
    """
    获得数组末尾元素的值
    :return: 末尾元素的值
    """
    return self.get(self._size - 1) # 直接调用get函数,安全可靠
 
  def set(self, index, elem):
    """
    将索引为index的元素的值设为elem
    时间复杂度:O(1)
    :param index: 索引
    :param elem:  新的值
    """
    if index < 0 or index >= self._size:    # 判断index的合法性
      raise Exception('Sat failed. Index is illegal.')
    self._data[index] = elem
 
  def contains(self, elem):
    """
    查看数组中是否存在元素elem,最好不要传入一个浮点数,你懂得。。
    时间复杂度:O(n)
    :param elem: 目标元素
    :return:   bool值,存在为真
    """
    for i in range(self._size):    # 遍历
      if self._data[i] == elem:
        return True        # 找到了就返回True
    return False            # 遍历完了还没找到,就返回False
 
  def find(self, elem):
    """
    在数组中查找元素,并返回元素所在的索引。(如果数组中存在多个elem,只返回最左边elem的索引)
    时间复杂度:O(n)
    :param elem: 目标元素
    :return:   元素所在的索引,没找到则返回-1(无效值)
    """
    for i in range(self._size):     # 遍历数组
      if self._data[i] == elem:
        return i          # 找到就返回索引
    return -1              # 没找到返回-1
 
  def findAll(self, elem):
    """
    找到值为elem全部元素的索引
    :param elem: 目标元素
    :return:   一个列表,值为全部elem的索引
    """
    ret_list = Arr()        # 建立一个新的数组用于存储索引值
    for i in range(self._size):   # 遍历数组
      if self._data[i] == elem:
        ret_list.addLast(i)   # 找到就将索引添加进ret_list
    return ret_list
 
  def remove(self, index):
    """
    删除索引为index的元素。index后面的元素都要向前移动一个位置
    时间复杂度:O(n)
    :param index: 目标索引
    :return:   位于该索引的元素的值
    """
    if index < 0 or index >= self._size:  # index合法性检查
      raise Exception('Remove failed.Require 0 <= index < self._size')
    ret = self._data[index]         # 拷贝一下index处的元素,便于返回
    for i in range(index + 1, self._size): # index后面的元素都向前挪一个位置
      self._data[i - 1] = self._data[i]
    self._size -= 1     # 维护self._size
    self._data[self._size] = None  # 最后一个元素的垃圾回收
 
    if self._size and self._capacity // self._size == 4:  # 如果当前有效元素为总容量的四分之一且还存在有效元素,则将容量缩减为原来的一半
      self._resize(self._capacity // 2)
    return ret
 
  def removeFirst(self):
    """
    删除数组首位置的元素
    时间复杂度:O(n)
    :return: 数组首位置的元素
    """
    return self.remove(0)  # 调用remove函数
 
  def removeLast(self):
    """
    删除数组末尾的元素
    时间复杂度:O(1)
    :return: 数组末尾的元素
    """
    return self.remove(self._size - 1)   # 调用remove函数
 
  def removeElement(self, elem):
    """
    删除数组中为elem的元素,如果数组中不存在elem,那么什么都不做。如果存在多个相同的elem,只删除最左边的那个
    时间复杂度:O(n)
    :param elem: 要删除的目标元素
    """
    index = self.find(elem)     # 尝试找到目标元素(最左边的)的索引
    if index != -1:         # elem在数组中就删除,否则什么都不做
      self.remove(index)     # 调用remove函数
 
  def removeAllElement(self, elem):
    """
    删除数组内所有值为elem的元素,可以用递归来写,这里用的迭代的方法。elem不存在就什么都不做
    :param elem: 要删除的目标元素
    """
    while True:
      index = self.find(elem)   # 循环来找elem,如果还存在就继续删除
      if index != -1:       # 若存在
        self.remove(index)
      else:
        break
 
  def get_Max_index(self):
    """
    获取数组中的最大元素的索引,返回最大元素的索引值,如果有多个最大值,默认返回最左边那个的索引
    时间复杂度:O(n)
    :return: 最大元素的索引
    """
    if self.isEmpty():
      raise Exception('Error, array is Empty!')
    max_elem_index = 0  # 记录最大值的索引,初始化为0 
    for i in range(1, self.getSize()):  # 从索引1开始遍历,一直到数组尾部
      if self._data[i] > self._data[max_elem_index]:  # 如果当前索引的值大于最大值索引处元素的值
        max_elem_index = i   # 更新max_elem_index,这样它还是当前最大值的索引
    return max_elem_index   # 遍历完后,将数组的最大值的索引返回
 
  def removeMax(self):
    """
    删除数组中的最大元素,返回最大元素的值,如果有多个最大值,默认值删除最左边那个
    时间复杂度:O(n)
    :return: 最大元素
    """
    return self.remove(self.get_Max_index())  # 直接调用remove函数删除最大值
 
  def get_Min_index(self):
    """
    获取数组中的最小元素的索引,返回最小元素的索引值,如果有多个最小值,默认返回最左边那个的索引
    时间复杂度:O(n)
    :return: 最小元素的索引
    """
    if self.isEmpty():
      raise Exception('Error, array is Empty!')
    min_elem_index = 0  # 记录最小值的索引,初始化为0 
    for i in range(1, self.getSize()):  # 从索引1开始遍历,一直到数组尾部
      if self._data[i] < self._data[min_elem_index]:  # 如果当前索引的值小于最小值索引处元素的值
        min_elem_index = i   # 更新min_elem_index,这样它还是当前最小值的索引
    return min_elem_index   # 遍历完后,将数组的最小值的索引返回
 
  def removeMin(self):
    """
    删除数组中的最小元素,返回最小元素的值,如果有多个最小值,默认值删除最左边那个
    时间复杂度:O(2n),可以看成是O(n)的
    :return: 最小元素
    """
    return self.remove(self.get_Min_index())
 
  def swap(self, index1, index2):
    """
    交换分别位于索引index1和索引index2处的元素
    :param index1: 索引1
    :param index2: 索引2
    """ 
    if index1 < 0 or index2 < 0 or index1 >= self._size or index2 >= self._size:    # 合法性检查
      raise Exception('Index is illegal')
    self._data[index1], self._data[index2] = self._data[index2], self._data[index1]   # 交换元素
 
  def printArr(self):
    """对数组元素进行打印"""
    for i in range(self._size):
      print(self._data[i], end=' ')
    print('\nSize: %d-----Capacity: %d' % (self.getSize(), self.getCapacity()))
 
  # private
  def _resize(self, new_capacity):
    """
    数组容量放缩至new_capacity,私有成员函数
    :param new_capacity: 新的容量
    """
    new_arr = Arr(new_capacity)     # 建立一个新的数组new_arr,容量为new_capacity
    for i in range(self._size):
      new_arr.addLast(self._data[i]) # 将当前数组的元素按当前顺序全部移动到new_arr中
    self._capacity = new_capacity    # 数组容量变为new_capacity
    self._data = new_arr._data     # 将new_arr._data赋值给self._data,从而完成数组的容量放缩操作

测试代码

import Array 
import numpy as np
np.random.seed(7)
test = Array.Arr()
print(test.getSize())
print(test.getCapacity())
print(test.isEmpty())
for i in range(8):
  test.add(0, np.random.randint(5))
test.printArr()
test.addLast(2)
test.printArr()
print(test.get(3))
test.set(3, 10)
test.printArr()
print(test.contains(10))
print(test.find(4))
test.findAll(1).printArr()
test.remove(3)
test.printArr()
test.removeFirst()
test.removeLast()
test.printArr()
test.removeElement(4)
test.printArr()
test.removeAllElement(3)
test.printArr()
for i in range(30):
  test.addLast(np.random.randint(10))
test.printArr()
print(test[3])
test.swap(0, 1)
test.printArr()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现通过代理服务器访问远程url的方法
Apr 29 Python
python通过ssh-powershell监控windows的方法
Jun 02 Python
python生成IP段的方法
Jul 07 Python
简单了解Python下用于监视文件系统的pyinotify包
Nov 13 Python
python模块之paramiko实例代码
Jan 31 Python
python实现键盘控制鼠标移动
Nov 27 Python
python多线程并发让两个LED同时亮的方法
Feb 18 Python
【python】matplotlib动态显示详解
Apr 11 Python
对Python中一维向量和一维向量转置相乘的方法详解
Aug 26 Python
python 成功引入包但无法正常调用的解决
Mar 09 Python
django ListView的使用 ListView中获取url中的参数值方式
Mar 27 Python
Python如何输出百分比
Jul 31 Python
python移位运算的实现
Jul 15 #Python
python与C、C++混编的四种方式(小结)
Jul 15 #Python
解决Python3 控制台输出InsecureRequestWarning问题
Jul 15 #Python
python导包的几种方法(自定义包的生成以及导入详解)
Jul 15 #Python
Python将文字转成语音并读出来的实例详解
Jul 15 #Python
解决win7操作系统Python3.7.1安装后启动提示缺少.dll文件问题
Jul 15 #Python
Python符号计算之实现函数极限的方法
Jul 15 #Python
You might like
php实现根据IP地址获取其所在省市的方法
2015/04/30 PHP
phpcmsv9.0任意文件上传漏洞解析
2020/10/20 PHP
ExtJS GridPanel 根据条件改变字体颜色
2010/03/08 Javascript
基于jquery的滚动条滚动固定div(附演示下载)
2012/10/29 Javascript
图片上传插件jquery.uploadify详解
2013/11/15 Javascript
浅析document.ready和window.onload的区别讲解
2013/12/18 Javascript
Enter回车切换输入焦点实现思路与代码兼容各大浏览器
2014/09/01 Javascript
js实现左侧网页tab滑动门效果代码
2015/09/06 Javascript
jQuery实现非常实用漂亮的select下拉菜单选择效果
2015/11/06 Javascript
jQuery实现的超简单点赞效果实例分析
2015/12/31 Javascript
JS判断iframe是否加载完成的方法
2016/08/03 Javascript
浅谈JavaScript中变量和函数声明的提升
2016/08/09 Javascript
JS验证图片格式和大小并预览的简单实例
2016/10/11 Javascript
Angular 4环境准备与Angular cli创建项目详解
2017/05/27 Javascript
JavaScript使用闭包模仿块级作用域操作示例
2019/01/21 Javascript
vue中的inject学习教程
2019/04/24 Javascript
js中的深浅拷贝问题简析
2019/05/10 Javascript
vue-element-admin 菜单标签失效的解决方式
2019/11/12 Javascript
在vue项目中封装echarts的步骤
2020/12/25 Vue.js
[19:24]DOTA2客户端使用指南 一分钟快速设置轻松超神
2013/09/24 DOTA
[01:18:43]2014 DOTA2华西杯精英邀请赛5 24 iG VS DK
2014/05/25 DOTA
fastcgi文件读取漏洞之python扫描脚本
2017/04/23 Python
通过python+selenium3实现浏览器刷简书文章阅读量
2017/12/26 Python
利用Python将每日一句定时推送至微信的实现方法
2018/08/13 Python
使用pandas实现csv/excel sheet互相转换的方法
2018/12/10 Python
python异步编程 使用yield from过程解析
2019/09/25 Python
ansible动态Inventory主机清单配置遇到的坑
2020/01/19 Python
解决Jupyter无法导入已安装的 module问题
2020/04/17 Python
Ralph Lauren意大利官方网站:时尚界最负盛名的品牌之一
2018/10/18 全球购物
四年级语文教学反思
2014/02/05 职场文书
会计助理岗位职责
2014/02/17 职场文书
大学奖学金获奖感言
2014/08/15 职场文书
女方家长婚礼答谢词
2015/09/29 职场文书
python实现简单倒计时功能
2021/04/21 Python
mysql如何能有效防止删库跑路
2021/10/05 MySQL
mysql函数全面总结
2021/11/11 MySQL