Posted in Python onJanuary 03, 2020
Pytorch提取模型特征向量
# -*- coding: utf-8 -*- """ dj """ import torch import torch.nn as nn import os from torchvision import models, transforms from torch.autograd import Variable import numpy as np from PIL import Image import torchvision.models as models import pretrainedmodels import pandas as pd class FCViewer(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class M(nn.Module): def __init__(self, backbone1, drop, pretrained=True): super(M,self).__init__() if pretrained: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') else: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None) self.img_encoder = list(img_model.children())[:-2] self.img_encoder.append(nn.AdaptiveAvgPool2d(1)) self.img_encoder = nn.Sequential(*self.img_encoder) if drop > 0: self.img_fc = nn.Sequential(FCViewer()) else: self.img_fc = nn.Sequential( FCViewer()) def forward(self, x_img): x_img = self.img_encoder(x_img) x_img = self.img_fc(x_img) return x_img model1=M('resnet18',0,pretrained=True) features_dir = '/home/cc/Desktop/features' transform1 = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor()]) file_path='/home/cc/Desktop/picture' names = os.listdir(file_path) print(names) for name in names: pic=file_path+'/'+name img = Image.open(pic) img1 = transform1(img) x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False) y = model1(x) y = y.data.numpy() y = y.tolist() #print(y) test=pd.DataFrame(data=y) #print(test) test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
jiazaixunlianhaodemoxing
import torch import torch.nn.functional as F import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms import argparse class ResidualBlock(nn.Module): def __init__(self, inchannel, outchannel, stride=1): super(ResidualBlock, self).__init__() self.left = nn.Sequential( nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False), nn.BatchNorm2d(outchannel), nn.ReLU(inplace=True), nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(outchannel) ) self.shortcut = nn.Sequential() if stride != 1 or inchannel != outchannel: self.shortcut = nn.Sequential( nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(outchannel) ) def forward(self, x): out = self.left(x) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, ResidualBlock, num_classes=10): super(ResNet, self).__init__() self.inchannel = 64 self.conv1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(), ) self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1) self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2) self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2) self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2) self.fc = nn.Linear(512, num_classes) def make_layer(self, block, channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) #strides=[1,1] layers = [] for stride in strides: layers.append(block(self.inchannel, channels, stride)) self.inchannel = channels return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.fc(out) return out def ResNet18(): return ResNet(ResidualBlock) import os from torchvision import models, transforms from torch.autograd import Variable import numpy as np from PIL import Image import torchvision.models as models import pretrainedmodels import pandas as pd class FCViewer(nn.Module): def forward(self, x): return x.view(x.size(0), -1) class M(nn.Module): def __init__(self, backbone1, drop, pretrained=True): super(M,self).__init__() if pretrained: img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') else: img_model = ResNet18() we='/home/cc/Desktop/dj/model1/incption--7' # 模型定义-ResNet #net = ResNet18().to(device) img_model.load_state_dict(torch.load(we))#diaoyong self.img_encoder = list(img_model.children())[:-2] self.img_encoder.append(nn.AdaptiveAvgPool2d(1)) self.img_encoder = nn.Sequential(*self.img_encoder) if drop > 0: self.img_fc = nn.Sequential(FCViewer()) else: self.img_fc = nn.Sequential( FCViewer()) def forward(self, x_img): x_img = self.img_encoder(x_img) x_img = self.img_fc(x_img) return x_img model1=M('resnet18',0,pretrained=None) features_dir = '/home/cc/Desktop/features' transform1 = transforms.Compose([ transforms.Resize(56), transforms.CenterCrop(32), transforms.ToTensor()]) file_path='/home/cc/Desktop/picture' names = os.listdir(file_path) print(names) for name in names: pic=file_path+'/'+name img = Image.open(pic) img1 = transform1(img) x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False) y = model1(x) y = y.data.numpy() y = y.tolist() #print(y) test=pd.DataFrame(data=y) #print(test) test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)
以上这篇Pytorch提取模型特征向量保存至csv的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
Pytorch提取模型特征向量保存至csv的例子
- Author -
朴素.无恙声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@