Pytorch提取模型特征向量保存至csv的例子


Posted in Python onJanuary 03, 2020

Pytorch提取模型特征向量

# -*- coding: utf-8 -*-
"""
dj
"""
import torch
import torch.nn as nn
import os
from torchvision import models, transforms
from torch.autograd import Variable 
import numpy as np
from PIL import Image 
import torchvision.models as models
import pretrainedmodels
import pandas as pd
class FCViewer(nn.Module):
 def forward(self, x):
  return x.view(x.size(0), -1)
class M(nn.Module):
 def __init__(self, backbone1, drop, pretrained=True):
  super(M,self).__init__()
  if pretrained:
   img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') 
  else:
   img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained=None)  
  self.img_encoder = list(img_model.children())[:-2]
  self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
  self.img_encoder = nn.Sequential(*self.img_encoder)
  if drop > 0:
   self.img_fc = nn.Sequential(FCViewer())         
  else:
   self.img_fc = nn.Sequential(
    FCViewer())
 def forward(self, x_img):
  x_img = self.img_encoder(x_img)
  x_img = self.img_fc(x_img)
  return x_img 
model1=M('resnet18',0,pretrained=True)
features_dir = '/home/cc/Desktop/features' 
transform1 = transforms.Compose([
  transforms.Resize(256),
  transforms.CenterCrop(224),
  transforms.ToTensor()]) 
file_path='/home/cc/Desktop/picture'
names = os.listdir(file_path)
print(names)
for name in names:
 pic=file_path+'/'+name
 img = Image.open(pic)
 img1 = transform1(img)
 x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
 y = model1(x)
 y = y.data.numpy()
 y = y.tolist()
 #print(y)
 test=pd.DataFrame(data=y)
 #print(test)
 test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)

jiazaixunlianhaodemoxing

import torch
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
class ResidualBlock(nn.Module):
 def __init__(self, inchannel, outchannel, stride=1):
  super(ResidualBlock, self).__init__()
  self.left = nn.Sequential(
   nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=stride, padding=1, bias=False),
   nn.BatchNorm2d(outchannel),
   nn.ReLU(inplace=True),
   nn.Conv2d(outchannel, outchannel, kernel_size=3, stride=1, padding=1, bias=False),
   nn.BatchNorm2d(outchannel)
  )
  self.shortcut = nn.Sequential()
  if stride != 1 or inchannel != outchannel:
   self.shortcut = nn.Sequential(
    nn.Conv2d(inchannel, outchannel, kernel_size=1, stride=stride, bias=False),
    nn.BatchNorm2d(outchannel)
   )

 def forward(self, x):
  out = self.left(x)
  out += self.shortcut(x)
  out = F.relu(out)
  return out

class ResNet(nn.Module):
 def __init__(self, ResidualBlock, num_classes=10):
  super(ResNet, self).__init__()
  self.inchannel = 64
  self.conv1 = nn.Sequential(
   nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False),
   nn.BatchNorm2d(64),
   nn.ReLU(),
  )
  self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)
  self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
  self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
  self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
  self.fc = nn.Linear(512, num_classes)

 def make_layer(self, block, channels, num_blocks, stride):
  strides = [stride] + [1] * (num_blocks - 1) #strides=[1,1]
  layers = []
  for stride in strides:
   layers.append(block(self.inchannel, channels, stride))
   self.inchannel = channels
  return nn.Sequential(*layers)

 def forward(self, x):
  out = self.conv1(x)
  out = self.layer1(out)
  out = self.layer2(out)
  out = self.layer3(out)
  out = self.layer4(out)
  out = F.avg_pool2d(out, 4)
  out = out.view(out.size(0), -1)
  out = self.fc(out)
  return out


def ResNet18():

 return ResNet(ResidualBlock)

import os
from torchvision import models, transforms
from torch.autograd import Variable 
import numpy as np
from PIL import Image 
import torchvision.models as models
import pretrainedmodels
import pandas as pd
class FCViewer(nn.Module):
 def forward(self, x):
  return x.view(x.size(0), -1)
class M(nn.Module):
 def __init__(self, backbone1, drop, pretrained=True):
  super(M,self).__init__()
  if pretrained:
   img_model = pretrainedmodels.__dict__[backbone1](num_classes=1000, pretrained='imagenet') 
  else:
   img_model = ResNet18()
   we='/home/cc/Desktop/dj/model1/incption--7'
   # 模型定义-ResNet
   #net = ResNet18().to(device)
   img_model.load_state_dict(torch.load(we))#diaoyong  
  self.img_encoder = list(img_model.children())[:-2]
  self.img_encoder.append(nn.AdaptiveAvgPool2d(1))
  self.img_encoder = nn.Sequential(*self.img_encoder)
  if drop > 0:
   self.img_fc = nn.Sequential(FCViewer())         
  else:
   self.img_fc = nn.Sequential(
    FCViewer())
 def forward(self, x_img):
  x_img = self.img_encoder(x_img)
  x_img = self.img_fc(x_img)
  return x_img 
model1=M('resnet18',0,pretrained=None)
features_dir = '/home/cc/Desktop/features' 
transform1 = transforms.Compose([
  transforms.Resize(56),
  transforms.CenterCrop(32),
  transforms.ToTensor()]) 
file_path='/home/cc/Desktop/picture'
names = os.listdir(file_path)
print(names)
for name in names:
 pic=file_path+'/'+name
 img = Image.open(pic)
 img1 = transform1(img)
 x = Variable(torch.unsqueeze(img1, dim=0).float(), requires_grad=False)
 y = model1(x)
 y = y.data.numpy()
 y = y.tolist()
 #print(y)
 test=pd.DataFrame(data=y)
 #print(test)
 test.to_csv("/home/cc/Desktop/features/3.csv",mode='a+',index=None,header=None)

以上这篇Pytorch提取模型特征向量保存至csv的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python绘图方法实例入门
May 19 Python
Django视图之ORM数据库查询操作API的实例
Oct 27 Python
Python3获取拉勾网招聘信息的方法实例
Apr 03 Python
python中aioysql(异步操作MySQL)的方法
Apr 11 Python
python绘制地震散点图
Jun 18 Python
对Python3中列表乘以某一个数的示例详解
Jul 20 Python
Django 在iframe里跳转顶层url的例子
Aug 21 Python
python numpy存取文件的方式
Apr 01 Python
Python中remove漏删和索引越界问题的解决
Mar 18 Python
Python性能分析工具py-spy原理用法解析
Jul 27 Python
Matplotlib中rcParams使用方法
Jan 05 Python
Python中Selenium对Cookie的操作方法
Jul 09 Python
pytorch查看torch.Tensor和model是否在CUDA上的实例
Jan 03 #Python
python实现上传文件到linux指定目录的方法
Jan 03 #Python
pytorch::Dataloader中的迭代器和生成器应用详解
Jan 03 #Python
django商品分类及商品数据建模实例详解
Jan 03 #Python
PyTorch和Keras计算模型参数的例子
Jan 02 #Python
Pytorch中实现只导入部分模型参数的方式
Jan 02 #Python
PyTorch中topk函数的用法详解
Jan 02 #Python
You might like
PHP修改session_id示例代码
2014/01/08 PHP
PHP文件上传操作实例详解
2016/09/27 PHP
php使用高斯算法实现图片的模糊处理功能示例
2016/11/11 PHP
提高Laravel应用性能方法详解
2019/06/24 PHP
Jquery Validation插件防止重复提交表单的解决方法
2010/03/05 Javascript
Javascript 面向对象之重载
2010/05/04 Javascript
让元素在网页中可拖动示例代码
2013/08/13 Javascript
js函数模拟显示桌面.scf程序示例
2014/04/20 Javascript
JavaScript-RegExp对象只能使用一次问题解决方法
2014/06/23 Javascript
AngularJS基础学习笔记之指令
2015/05/10 Javascript
js获取隐藏元素宽高的实现方法
2016/05/19 Javascript
JS 数字转换为大写金额的简单实例
2016/08/04 Javascript
纯JS实现的读取excel文件内容功能示例【支持所有浏览器】
2018/06/23 Javascript
Javascript幻灯片播放功能实现过程解析
2020/05/07 Javascript
[01:03:38]2014 DOTA2国际邀请赛中国区预选赛5.21 CNB VS CIS
2014/05/22 DOTA
[02:21]十步杀一人,千里不留行——DOTA2全新英雄天涯墨客展示
2018/08/29 DOTA
[01:04:05]Mineski vs TNC 2019国际邀请赛小组赛 BO2 第一场 8.15
2019/08/16 DOTA
python定时采集摄像头图像上传ftp服务器功能实现
2013/12/23 Python
python支持断点续传的多线程下载示例
2014/01/16 Python
Python使用Scrapy爬取妹子图
2015/05/28 Python
Python找出文件中使用率最高的汉字实例详解
2015/06/03 Python
Python中max函数用法实例分析
2015/07/17 Python
Python内建函数之raw_input()与input()代码解析
2017/10/26 Python
python+opencv轮廓检测代码解析
2018/01/05 Python
python的pytest框架之命令行参数详解(下)
2019/06/27 Python
python绘制彩虹图
2019/12/16 Python
python em算法的实现
2020/10/03 Python
C#软件工程师英语面试题
2015/06/07 面试题
中学生家长评语大全
2014/04/16 职场文书
法院授权委托书范文
2014/08/02 职场文书
领导干部对照检查材料
2014/08/24 职场文书
群教班子对照检查材料
2014/08/26 职场文书
军训通讯稿范文
2015/07/18 职场文书
新郎父亲婚礼致辞
2015/07/27 职场文书
python创建字典及相关管理操作
2022/04/13 Python
利用Redis实现点赞功能的示例代码
2022/06/28 Redis