Python读取和写入Excel数据


Posted in Python onApril 20, 2022

1. 功能分析

1.加载文件夹内所有的Excel数据;

2.生产贡献度分析图表(以柱状图显示表格数据);

3.提起Excel表格中指定列数据;

4.定向筛选所需数据;

5.多表数据统计排行;

6.多表数据合并新excel文件。

2.系统开发环境

Anaconda3,在conda 中,window和ubuntu中的python功能一样 。

pycharm。

3.安装依赖库

Python读取和写入Excel数据

这些依赖包   都要装好

import os
import xlrd2 #xlrd: 对Excel进行读相关操作
import xlwt #xlwt: 对Excel进行写相关操作,且只能创建一个全新的Excel然后进行写入和保存。
import numpy
import matplotlib
from prettytable import PrettyTable  #PrettyTable 是python中的一个第三方库,可用来生成美观的ASCII格式的表格
from matplotlib import pyplot as plt

4. 主函数设计

Excel数据分析师的主函数main(),主要用于实现系统的主界面。在主函数main()中,首先调用get_files_name()函数获取文件名。

get_files_name()函数代码如下:

#导入文件
def get_files_name():
    """
    用于获取文件名
    :return: 返回值为文件名组成的列表
    """
    file_list = os.listdir('./data')
    return file_list

然后调用load_data()函数来读取excel文件并字典方式保存。

#保存生产excel表
def load_data(file_list):
    """
    用于读取指定的文件并保存至字典数据结构中
    :param file_list: 需要加载的文件列表
    :return: 保存了文件内容的字典
    """
    dictory = {}
    for file in file_list:
        # 获取表格文件
        book = xlrd2.open_workbook('./data/'+file)
        # 获取表格中的所有sheet
        names = book.sheet_names()
        # 获取第一个sheet
        sheet = book.sheet_by_index(0)
        # 获取当前表格的行数
        rows = sheet.nrows
        # 获取当前表格的列数
        cols = sheet.ncols
        # 获取表头文件,即表格第一行
        head = sheet.row_values(0)
        for row in range(rows-1):
            # 如果当前字典中没有该城市则创建一个
            if not sheet.cell_value(row+1, 0) in dictory.keys():
                dictory[sheet.cell_value(row+1, 0)] = {}
            for col in range(cols-1):
                dictory[sheet.cell_value(row+1, 0)][head[col+1]] = float(sheet.cell_value(row+1, col+1))
    return dictory

接着调用menu()函数生成功能选择菜单。

menu()函数代码如下: 

# 打印菜单
def menu():
    print("  ----------Excel 数据分析师----------")
    print("{:<30}".format("  ==============功能菜单============== "))
    print("{:<30}".format("   1. 显示当前数据                     "))
    print("{:<30}".format("   2. 以柱状图展示当前数据              "))
    print("{:<30}".format("   3. 提起指定列                       "))
    print("{:<30}".format("   4. 定向筛选指定元素                       "))
    print("{:<30}".format("   5. 数据排行                         "))
    print("{:<30}".format("   6. 重新加载数据                      "))
    print("{:<30}".format("   7. 保存当前数据                      "))
    print("{:<30}".format("   0. 退出程序                          "))
    print("{:<30}".format(" ==================================== "))
    print("{:<30}".format(" 说明:输入相应数字后按下回车选择指定功能 "))
    print('\n')

并且应用if语句控制各个子函数的调用,从而实现对Excel文件的选择,Excel数据的加载,选择、筛选、合并、排序和统计等功能。

主函数完整代码如下:

if __name__ == "__main__":
    # 导入文件
    files = get_files_name()
    data = {}
    print("当前data文件夹下的文件如下:")
    num = 1
    for file in files:
        print(num, file)
        num += 1
    while(1):
        index_str = input("请选择需要导入的文件序号(多个文件导入时用空格分开, 输入0则导入所有文件,输入多文件则自动合并):")
        index_list = index_str.split(' ')
        try:
            index_list.remove('')
        except:
            pass
        choice_file_list = []
        if index_list[0] == '0':
            choice_file_list = files
            break
        else:
            try:
                for item in index_list:
                    choice_file_list.append(files[int(item)-1])
            except:
                print("输入序号有误")
                continue
        if choice_file_list:
            break
        else:
            print("输入序号有误")
    data = load_data(choice_file_list)
    print("导入数据成功\n")
    # 调用函数,打印菜单
    menu()
    while 1:
        choice = input("请选择指定功能:")
        if choice == '0':
            print("\n退出程序\n")
            exit()
        elif choice == '1':
            print("当前功能:显示当前数据")
            show_data(data)
            input('\n按下回车返回菜单')
            menu()
        elif choice == '2':
            print("当前功能:以柱状图显示数据")
            draw_plot(data)
            input('\n按下回车返回菜单')
            menu()
        elif choice == '3':
            print("当前功能:筛选指定列")
            keys = list(data[list(data.keys())[0]].keys())
            print("当前表格中的列如下:")
            num = 1
            for key in keys:
                print(num, key)
                num += 1
            choice_col_list = []
            while (1):
                index_str = input("请选择需要筛选出的列序号(多列之间用空格分开,0代表所有列):")
                index_list = index_str.split(' ')
                try:
                    index_list.remove('')
                except:
                    pass
                choice_file_list = []
                if index_list[0] == '0':
                    choice_col_list = keys
                    break
                else:
                    try:
                        for item in index_list:
                            choice_col_list.append(keys[int(item) - 1])
                    except:
                        print("输入序号有误")
                        continue
                if choice_col_list:
                    break
                else:
                    print("输入序号有误")
            data = get_specified_cols(data, choice_col_list)
            print("筛选成功")
            input('\n按下回车返回菜单')
            menu()
        elif choice == '4':
            print("当前功能:筛选指定行")
            keys = list(data[list(data.keys())[0]].keys())
            print("当前表格中的列如下:")
            num = 1
            print(num, "城市")
            num += 1
            for key in keys:
                print(num, key)
                num += 1
            col = int(input("请输入需要进行筛选的数据所在的列:"))-2
            if col == -1:
                col = '城市'
            else:
                col = keys[col]
            op_list = ['<', '<=', '=', '>=', '>']
            print("比较操作符如下:")
            num = 1
            for op in op_list:
                print(num, op)
                num += 1
            operation = int(input("请输入比较操作符前的序号:"))-1
            operation = op_list[operation]
            value = input("请输入需要筛选的值:")
            data = get_specified_data(data, operation, col, value)
            print("筛选成功")
            input('\n按下回车返回菜单')
            menu()
        elif choice == '5':
            print("当前功能:数据排序")
            keys = list(data[list(data.keys())[0]].keys())
            print("当前表格中的列如下:")
            num = 1
            for key in keys:
                print(num, key) #显示当前表格中的所有的列
                num += 1
            col = int(input("请输入需要进行排序的数据所在的列:")) - 1
            col = keys[col]
            reverse = input("排序方式:\n1 从大到小排序\n2 从小到大排序\n")
            if reverse == '1':
                data = sort_data(data, col, True)
            elif reverse == '2':
                data = sort_data(data, col, False)
            else:
                print("输入有误")
            input('\n按下回车返回菜单')
            menu()
        elif choice == '6':
            # 导入文件
            files = get_files_name()
            data = {}
            print("当前文件夹下的文件如下:")
            num = 1
            for file in files:
                print(num, file)
                num += 1
            while (1):
                index_str = input("请选择需要导入的文件序号(多个文件导入时用空格分开, 输入0则导入所有文件,输入多文件则自动合并):")
                index_list = index_str.split(' ')
                try:
                    index_list.remove('')
                except:
                    pass
                choice_file_list = []
                if index_list[0] == '0':
                    choice_file_list = files
                    break
                else:
                    try:
                        for item in index_list:
                            choice_file_list.append(files[int(item) - 1])
                    except:
                        print("输入序号有误")
                        continue
                if choice_file_list:
                    break
                else:
                    print("输入序号有误")
            data = load_data(choice_file_list)
            print("导入数据成功\n")
            # 打印菜单
            menu()
        elif choice == '7':
            print("当前功能:保存数据")
            save(data)
            input('\n按下回车返回菜单')
            menu()
        else:
            print("请输入正确的数字")
            input('\n按下回车返回菜单')
            menu()

5.模块设计

加载文件夹内所有的Excel数据

show_data()函数通过PrettyTable 库(PrettyTable 库是python中的一个第三方库,可用来生成美观的ASCII格式的表格)将之前保存的字典数据生成表格。

#加载显示数据
def show_data(dictory):
    try:
        keys = list(dictory[list(dictory.keys())[0]].keys())
    except:
        print("当前数据为空")
        return
    head = ['城市']
    head.extend(keys)
    table = PrettyTable(head)
    for key in dictory.keys():
        line = [key]
        for key_2 in keys:
            line.append(dictory[key][key_2])
        table.add_row(line)
    print(table)

效果图如下:

Python读取和写入Excel数据

生产贡献度分析图表(以柱状图显示表格数据)

draw_plot( )函数使用了matplotlib库。通过atplotlib.rc( )来设置字体,通过plt.bar( )函数来绘制柱状图,通过plt.legend( )函数来给图添加图例。

#制作图表
def draw_plot(dictory):
    font = {'family': 'MicroSoft Yahei', 'weight': 'bold', 'size': 7}
    matplotlib.rc('font', **font) #设置中文字体
    # 定义三个颜色
    index = numpy.arange(len(dictory.keys()))
    color = [(256 / 256, 0 / 256, 0 / 256, 1),
            (0 / 256, 0 / 256, 256 / 256, 1),
            (0 / 256, 256 / 256, 0 / 256, 1),
            (0 / 256, 0 / 256, 0 / 256, 1)]
    first_key = list(dictory.keys())
    first_key = first_key[0]
    cols = list(dictory[first_key].keys())
    data = []
    for i in range(len(cols)):
        data.append([])
    for key in dictory.keys():
        for col in range(len(cols)):
            data[col].append(dictory[key][cols[col]])
    offset = -1/4
    for i in range(len(cols)):
        plt.bar(index+offset, data[i], color=color[i], width=1 / 5) #通过bar函数可以用柱状图来表达一些变量的统计分布
        offset += 1/4
    plt.xticks(index, dictory.keys())#表示刻度
    plt.legend(cols)#给图像加上图例
    plt.show()

效果图 

Python读取和写入Excel数据

提起Excel表格中指定列数据

get_specified_cols()函数根据用户在菜单输入的列名,通过字典的索引筛选出列名,加载指定列的所有数据。

#提起指定列
def get_specified_cols(dictory, col_name_list):
    """
    筛选出指定的列
    :param dictory:原始字典
    :param col_name_list: 需要筛选出的列名,城市名默认出现
    :return: 筛选之后的字典
    """
    new_dict = {}
    for key in dictory.keys():
        new_dict[key] = {}
        for col_name in col_name_list:
            new_dict[key][col_name] = dictory[key][col_name]
    return new_dict

效果图如下:

Python读取和写入Excel数据

到此这篇关于详解Python如何实现Excel数据读取和写入的文章就介绍到这了!

Python 相关文章推荐
Python常用的内置序列结构(列表、元组、字典)学习笔记
Jul 08 Python
详解appium+python 启动一个app步骤
Dec 20 Python
Python使用matplotlib实现的图像读取、切割裁剪功能示例
Apr 28 Python
django+xadmin+djcelery实现后台管理定时任务
Aug 14 Python
Python基础之条件控制操作示例【if语句】
Mar 23 Python
Python中利用LSTM模型进行时间序列预测分析的实现
Jul 26 Python
Django model.py表单设置默认值允许为空的操作
May 19 Python
Java ExcutorService优雅关闭方式解析
May 30 Python
python编写一个会算账的脚本的示例代码
Jun 02 Python
Python替换NumPy数组中大于某个值的所有元素实例
Jun 08 Python
Python如何创建装饰器时保留函数元信息
Aug 07 Python
ubuntu16.04升级Python3.5到Python3.7的方法步骤
Aug 20 Python
Python 的演示平台支持 WSGI 接口的应用
Apr 20 #Python
python​格式化字符串
Apr 20 #Python
Python编写冷笑话生成器
Apr 20 #Python
Python Django / Flask如何使用Elasticsearch
Apr 19 #Python
python中mongodb包操作数据库
Apr 19 #Python
Elasticsearch 聚合查询和排序
Apr 19 #Python
Elasticsearch 基本查询和组合查询
Apr 19 #Python
You might like
php页面缓存ob系列函数介绍
2012/10/18 PHP
Memcached常用命令以及使用说明详解
2013/06/27 PHP
如何阻止网站被恶意反向代理访问(防网站镜像)
2014/03/18 PHP
php序列化函数serialize() 和 unserialize() 与原生函数对比
2015/05/08 PHP
PHP Oauth授权和本地加密实现方法
2016/08/12 PHP
PHP htmlspecialchars()函数用法与实例讲解
2019/03/08 PHP
jQuery Pagination Ajax分页插件(分页切换时无刷新与延迟)中文翻译版
2013/01/11 Javascript
jquery 元素控制(追加元素/追加内容)介绍及应用
2013/04/21 Javascript
jQuery.extend()的实现方式详解及实例
2013/06/29 Javascript
js获取IP和PcName(IE)在vs中可用
2013/08/02 Javascript
页面加载完毕后滚动条自动滚动一定位置
2014/02/20 Javascript
Javascript图片上传前的本地预览实例
2014/06/16 Javascript
Javascript中prototype的使用详解
2016/06/18 Javascript
最棒的Angular2表格控件
2016/08/10 Javascript
vue.js将时间戳转化为日期格式的实现代码
2018/06/05 Javascript
用vuex写了一个购物车H5页面的示例代码
2018/12/04 Javascript
简单了解Javscript中兄弟ifream的方法调用
2019/06/17 Javascript
python3使用requests模块爬取页面内容的实战演练
2017/09/25 Python
用TensorFlow实现lasso回归和岭回归算法的示例
2018/05/02 Python
Linux下python制作名片示例
2018/07/20 Python
Python之pymysql的使用小结
2019/07/01 Python
python fuzzywuzzy模块模糊字符串匹配详细用法
2019/08/29 Python
python pycharm的安装及其使用
2019/10/11 Python
Python3.9最新版下载与安装图文教程详解(Windows系统为例)
2020/11/28 Python
英国女士家居服网站:hush
2017/08/09 全球购物
沪江旗下的海量优质课程平台:沪江网校
2017/11/07 全球购物
39美元购买一副眼镜或太阳镜:39DollarGlasses.com
2018/06/17 全球购物
英国排名第一的停车场运营商:NCP
2019/08/26 全球购物
老师推荐信
2013/10/28 职场文书
职业技术学校毕业生推荐信
2013/12/03 职场文书
村捐赠仪式答谢词
2014/01/21 职场文书
初三政治教学反思
2014/01/30 职场文书
房产转让协议书(2014版)
2014/09/30 职场文书
2015年社区中秋节活动总结
2015/03/23 职场文书
感谢师恩主题班会
2015/08/17 职场文书
使用Python解决图表与画布的间距问题
2022/04/11 Python