Python读取和写入Excel数据


Posted in Python onApril 20, 2022

1. 功能分析

1.加载文件夹内所有的Excel数据;

2.生产贡献度分析图表(以柱状图显示表格数据);

3.提起Excel表格中指定列数据;

4.定向筛选所需数据;

5.多表数据统计排行;

6.多表数据合并新excel文件。

2.系统开发环境

Anaconda3,在conda 中,window和ubuntu中的python功能一样 。

pycharm。

3.安装依赖库

Python读取和写入Excel数据

这些依赖包   都要装好

import os
import xlrd2 #xlrd: 对Excel进行读相关操作
import xlwt #xlwt: 对Excel进行写相关操作,且只能创建一个全新的Excel然后进行写入和保存。
import numpy
import matplotlib
from prettytable import PrettyTable  #PrettyTable 是python中的一个第三方库,可用来生成美观的ASCII格式的表格
from matplotlib import pyplot as plt

4. 主函数设计

Excel数据分析师的主函数main(),主要用于实现系统的主界面。在主函数main()中,首先调用get_files_name()函数获取文件名。

get_files_name()函数代码如下:

#导入文件
def get_files_name():
    """
    用于获取文件名
    :return: 返回值为文件名组成的列表
    """
    file_list = os.listdir('./data')
    return file_list

然后调用load_data()函数来读取excel文件并字典方式保存。

#保存生产excel表
def load_data(file_list):
    """
    用于读取指定的文件并保存至字典数据结构中
    :param file_list: 需要加载的文件列表
    :return: 保存了文件内容的字典
    """
    dictory = {}
    for file in file_list:
        # 获取表格文件
        book = xlrd2.open_workbook('./data/'+file)
        # 获取表格中的所有sheet
        names = book.sheet_names()
        # 获取第一个sheet
        sheet = book.sheet_by_index(0)
        # 获取当前表格的行数
        rows = sheet.nrows
        # 获取当前表格的列数
        cols = sheet.ncols
        # 获取表头文件,即表格第一行
        head = sheet.row_values(0)
        for row in range(rows-1):
            # 如果当前字典中没有该城市则创建一个
            if not sheet.cell_value(row+1, 0) in dictory.keys():
                dictory[sheet.cell_value(row+1, 0)] = {}
            for col in range(cols-1):
                dictory[sheet.cell_value(row+1, 0)][head[col+1]] = float(sheet.cell_value(row+1, col+1))
    return dictory

接着调用menu()函数生成功能选择菜单。

menu()函数代码如下: 

# 打印菜单
def menu():
    print("  ----------Excel 数据分析师----------")
    print("{:<30}".format("  ==============功能菜单============== "))
    print("{:<30}".format("   1. 显示当前数据                     "))
    print("{:<30}".format("   2. 以柱状图展示当前数据              "))
    print("{:<30}".format("   3. 提起指定列                       "))
    print("{:<30}".format("   4. 定向筛选指定元素                       "))
    print("{:<30}".format("   5. 数据排行                         "))
    print("{:<30}".format("   6. 重新加载数据                      "))
    print("{:<30}".format("   7. 保存当前数据                      "))
    print("{:<30}".format("   0. 退出程序                          "))
    print("{:<30}".format(" ==================================== "))
    print("{:<30}".format(" 说明:输入相应数字后按下回车选择指定功能 "))
    print('\n')

并且应用if语句控制各个子函数的调用,从而实现对Excel文件的选择,Excel数据的加载,选择、筛选、合并、排序和统计等功能。

主函数完整代码如下:

if __name__ == "__main__":
    # 导入文件
    files = get_files_name()
    data = {}
    print("当前data文件夹下的文件如下:")
    num = 1
    for file in files:
        print(num, file)
        num += 1
    while(1):
        index_str = input("请选择需要导入的文件序号(多个文件导入时用空格分开, 输入0则导入所有文件,输入多文件则自动合并):")
        index_list = index_str.split(' ')
        try:
            index_list.remove('')
        except:
            pass
        choice_file_list = []
        if index_list[0] == '0':
            choice_file_list = files
            break
        else:
            try:
                for item in index_list:
                    choice_file_list.append(files[int(item)-1])
            except:
                print("输入序号有误")
                continue
        if choice_file_list:
            break
        else:
            print("输入序号有误")
    data = load_data(choice_file_list)
    print("导入数据成功\n")
    # 调用函数,打印菜单
    menu()
    while 1:
        choice = input("请选择指定功能:")
        if choice == '0':
            print("\n退出程序\n")
            exit()
        elif choice == '1':
            print("当前功能:显示当前数据")
            show_data(data)
            input('\n按下回车返回菜单')
            menu()
        elif choice == '2':
            print("当前功能:以柱状图显示数据")
            draw_plot(data)
            input('\n按下回车返回菜单')
            menu()
        elif choice == '3':
            print("当前功能:筛选指定列")
            keys = list(data[list(data.keys())[0]].keys())
            print("当前表格中的列如下:")
            num = 1
            for key in keys:
                print(num, key)
                num += 1
            choice_col_list = []
            while (1):
                index_str = input("请选择需要筛选出的列序号(多列之间用空格分开,0代表所有列):")
                index_list = index_str.split(' ')
                try:
                    index_list.remove('')
                except:
                    pass
                choice_file_list = []
                if index_list[0] == '0':
                    choice_col_list = keys
                    break
                else:
                    try:
                        for item in index_list:
                            choice_col_list.append(keys[int(item) - 1])
                    except:
                        print("输入序号有误")
                        continue
                if choice_col_list:
                    break
                else:
                    print("输入序号有误")
            data = get_specified_cols(data, choice_col_list)
            print("筛选成功")
            input('\n按下回车返回菜单')
            menu()
        elif choice == '4':
            print("当前功能:筛选指定行")
            keys = list(data[list(data.keys())[0]].keys())
            print("当前表格中的列如下:")
            num = 1
            print(num, "城市")
            num += 1
            for key in keys:
                print(num, key)
                num += 1
            col = int(input("请输入需要进行筛选的数据所在的列:"))-2
            if col == -1:
                col = '城市'
            else:
                col = keys[col]
            op_list = ['<', '<=', '=', '>=', '>']
            print("比较操作符如下:")
            num = 1
            for op in op_list:
                print(num, op)
                num += 1
            operation = int(input("请输入比较操作符前的序号:"))-1
            operation = op_list[operation]
            value = input("请输入需要筛选的值:")
            data = get_specified_data(data, operation, col, value)
            print("筛选成功")
            input('\n按下回车返回菜单')
            menu()
        elif choice == '5':
            print("当前功能:数据排序")
            keys = list(data[list(data.keys())[0]].keys())
            print("当前表格中的列如下:")
            num = 1
            for key in keys:
                print(num, key) #显示当前表格中的所有的列
                num += 1
            col = int(input("请输入需要进行排序的数据所在的列:")) - 1
            col = keys[col]
            reverse = input("排序方式:\n1 从大到小排序\n2 从小到大排序\n")
            if reverse == '1':
                data = sort_data(data, col, True)
            elif reverse == '2':
                data = sort_data(data, col, False)
            else:
                print("输入有误")
            input('\n按下回车返回菜单')
            menu()
        elif choice == '6':
            # 导入文件
            files = get_files_name()
            data = {}
            print("当前文件夹下的文件如下:")
            num = 1
            for file in files:
                print(num, file)
                num += 1
            while (1):
                index_str = input("请选择需要导入的文件序号(多个文件导入时用空格分开, 输入0则导入所有文件,输入多文件则自动合并):")
                index_list = index_str.split(' ')
                try:
                    index_list.remove('')
                except:
                    pass
                choice_file_list = []
                if index_list[0] == '0':
                    choice_file_list = files
                    break
                else:
                    try:
                        for item in index_list:
                            choice_file_list.append(files[int(item) - 1])
                    except:
                        print("输入序号有误")
                        continue
                if choice_file_list:
                    break
                else:
                    print("输入序号有误")
            data = load_data(choice_file_list)
            print("导入数据成功\n")
            # 打印菜单
            menu()
        elif choice == '7':
            print("当前功能:保存数据")
            save(data)
            input('\n按下回车返回菜单')
            menu()
        else:
            print("请输入正确的数字")
            input('\n按下回车返回菜单')
            menu()

5.模块设计

加载文件夹内所有的Excel数据

show_data()函数通过PrettyTable 库(PrettyTable 库是python中的一个第三方库,可用来生成美观的ASCII格式的表格)将之前保存的字典数据生成表格。

#加载显示数据
def show_data(dictory):
    try:
        keys = list(dictory[list(dictory.keys())[0]].keys())
    except:
        print("当前数据为空")
        return
    head = ['城市']
    head.extend(keys)
    table = PrettyTable(head)
    for key in dictory.keys():
        line = [key]
        for key_2 in keys:
            line.append(dictory[key][key_2])
        table.add_row(line)
    print(table)

效果图如下:

Python读取和写入Excel数据

生产贡献度分析图表(以柱状图显示表格数据)

draw_plot( )函数使用了matplotlib库。通过atplotlib.rc( )来设置字体,通过plt.bar( )函数来绘制柱状图,通过plt.legend( )函数来给图添加图例。

#制作图表
def draw_plot(dictory):
    font = {'family': 'MicroSoft Yahei', 'weight': 'bold', 'size': 7}
    matplotlib.rc('font', **font) #设置中文字体
    # 定义三个颜色
    index = numpy.arange(len(dictory.keys()))
    color = [(256 / 256, 0 / 256, 0 / 256, 1),
            (0 / 256, 0 / 256, 256 / 256, 1),
            (0 / 256, 256 / 256, 0 / 256, 1),
            (0 / 256, 0 / 256, 0 / 256, 1)]
    first_key = list(dictory.keys())
    first_key = first_key[0]
    cols = list(dictory[first_key].keys())
    data = []
    for i in range(len(cols)):
        data.append([])
    for key in dictory.keys():
        for col in range(len(cols)):
            data[col].append(dictory[key][cols[col]])
    offset = -1/4
    for i in range(len(cols)):
        plt.bar(index+offset, data[i], color=color[i], width=1 / 5) #通过bar函数可以用柱状图来表达一些变量的统计分布
        offset += 1/4
    plt.xticks(index, dictory.keys())#表示刻度
    plt.legend(cols)#给图像加上图例
    plt.show()

效果图 

Python读取和写入Excel数据

提起Excel表格中指定列数据

get_specified_cols()函数根据用户在菜单输入的列名,通过字典的索引筛选出列名,加载指定列的所有数据。

#提起指定列
def get_specified_cols(dictory, col_name_list):
    """
    筛选出指定的列
    :param dictory:原始字典
    :param col_name_list: 需要筛选出的列名,城市名默认出现
    :return: 筛选之后的字典
    """
    new_dict = {}
    for key in dictory.keys():
        new_dict[key] = {}
        for col_name in col_name_list:
            new_dict[key][col_name] = dictory[key][col_name]
    return new_dict

效果图如下:

Python读取和写入Excel数据

到此这篇关于详解Python如何实现Excel数据读取和写入的文章就介绍到这了!

Python 相关文章推荐
python使用PyCharm进行远程开发和调试
Nov 02 Python
python实现聚类算法原理
Feb 12 Python
python中yaml配置文件模块的使用详解
Apr 27 Python
python numpy 显示图像阵列的实例
Jul 02 Python
基于python中theano库的线性回归
Aug 31 Python
Python绘图Matplotlib之坐标轴及刻度总结
Jun 28 Python
python使用Qt界面以及逻辑实现方法
Jul 10 Python
springboot配置文件抽离 git管理统 配置中心详解
Sep 02 Python
使用python切片实现二维数组复制示例
Nov 26 Python
浅谈keras中loss与val_loss的关系
Jun 22 Python
python 密码学示例——理解哈希(Hash)算法
Sep 21 Python
如何创建一个Flask项目并进行简单配置
Nov 18 Python
Python 的演示平台支持 WSGI 接口的应用
Apr 20 #Python
python​格式化字符串
Apr 20 #Python
Python编写冷笑话生成器
Apr 20 #Python
Python Django / Flask如何使用Elasticsearch
Apr 19 #Python
python中mongodb包操作数据库
Apr 19 #Python
Elasticsearch 聚合查询和排序
Apr 19 #Python
Elasticsearch 基本查询和组合查询
Apr 19 #Python
You might like
全国FM电台频率大全 - 7 吉林省
2020/03/11 无线电
自己写的php中文截取函数mb_strlen和mb_substr
2015/02/09 PHP
PHP 常用的header头部定义汇总
2015/06/19 PHP
php判断访问IP的方法
2015/06/19 PHP
微信公众平台开发之配置与请求
2015/08/26 PHP
php微信开发接入
2016/08/27 PHP
滚动经典最新话题[prototype框架]下编写
2006/10/03 Javascript
分享10篇优秀的jQuery幻灯片制作教程及应用案例
2011/04/16 Javascript
js渐变显示渐变消失示例代码
2013/08/01 Javascript
基于MVC3方式实现下拉列表联动(JQuery)
2013/09/02 Javascript
js控制分页打印、打印分页示例
2014/02/08 Javascript
Javascript中的数据类型之旅
2015/10/18 Javascript
使用jQuery获取data-的自定义属性
2015/11/10 Javascript
浅析2种JavaScript继承方式
2015/12/04 Javascript
JavaScript计算器网页版实现代码分享
2016/07/15 Javascript
JS实现滑动门效果的方法详解
2016/12/19 Javascript
Vue2.0实现调用摄像头进行拍照功能 exif.js实现图片上传功能
2018/04/28 Javascript
jQuery实现checkbox全选、反选及删除等操作的方法详解
2019/08/02 jQuery
js实现鼠标拖拽div左右滑动
2020/01/15 Javascript
vue实现路由懒加载的3种方法示例
2020/09/01 Javascript
[42:23]完美世界DOTA2联赛PWL S3 Forest vs Rebirth 第二场 12.10
2020/12/13 DOTA
在Python下使用Txt2Html实现网页过滤代理的教程
2015/04/11 Python
python中的函数递归和迭代原理解析
2019/11/14 Python
python与mysql数据库交互的实现
2020/01/06 Python
python爬取王者荣耀全皮肤的简单实现代码
2020/01/31 Python
Python数组拼接np.concatenate实现过程
2020/04/18 Python
浅谈Python里面None True False之间的区别
2020/07/09 Python
分布式全文检索引擎ElasticSearch原理及使用实例
2020/11/14 Python
HTML5、Select下拉框右边加图标的实现代码(增进用户体验)
2017/10/16 HTML / CSS
英国现代家具和装饰网站:PN Home
2018/08/16 全球购物
琳达·法罗眼镜英国官网:Linda Farrow英国
2021/01/19 全球购物
教师的实习鉴定
2013/12/15 职场文书
物流管理专业推荐信
2014/09/06 职场文书
2014年物业公司工作总结
2014/11/22 职场文书
个人总结格式范文
2015/03/09 职场文书
springboot读取nacos配置文件
2022/05/20 Java/Android