python实现感知器算法(批处理)


Posted in Python onJanuary 18, 2019

本文实例为大家分享了Python感知器算法实现的具体代码,供大家参考,具体内容如下

先创建感知器类:用于二分类

# -*- coding: utf-8 -*-
 
import numpy as np
 
 
class Perceptron(object):
  """
  感知器:用于二分类
  参照改写 https://blog.csdn.net/simple_the_best/article/details/54619495
  
  属性:
  w0:偏差
  w:权向量
  learning_rate:学习率
  threshold:准则阈值
  """
  
  def __init__(self,learning_rate=0.01,threshold=0.001):
    self.learning_rate=learning_rate
    self.threshold=threshold
    
  def train(self,x,y):
    """训练
    参数:
    x:样本,维度为n*m(样本有m个特征,x输入就是m维),样本数量为n
    y:类标,维度为n*1,取值1和-1(正样本和负样本)
    
    返回:
    self:object
    """
    self.w0=0.0
    self.w=np.full(x.shape[1],0.0)
    
    k=0
    while(True):
      k+=1
      dJw0=0.0
      dJw=np.zeros(x.shape[1])
      err=0.0
      for i in range(0,x.shape[0]):
        if not (y[i]==1 or y[i]==-1):
          print("类标只能为1或-1!请核对!")
          break
        update=self.learning_rate*0.5*(y[i]-self.predict(x[i]))
        dJw0+=update
        dJw+=update*x[i]
        err+=np.abs(0.5*(y[i]-self.predict(x[i])))
      self.w0 += dJw0
      self.w += dJw
      if np.abs(np.sum(self.learning_rate*dJw))<self.threshold or k>500:
        print("迭代次数:",k," 错分样本数:",err)
        break
    return self
    
    
  def predict(self,x):
    """预测类别
    参数:
    x:样本,1*m维,1个样本,m维特征
    
    返回:
    yhat:预测的类标号,1或者-1,1代表正样本,-1代表负样本
    """
    if np.matmul(self.w,x.T)+self.w0>0:
      yhat=1
    else:
      yhat=-1
    return yhat 
  
  def predict_value(self,x):
    """预测值
    参数:
    x:样本,1*m维,1个样本,m维特征
    
    返回:
    y:预测值
    """
    y=np.matmul(self.w,x.T)+self.w0
    return y

然后为Iris数据集创建一个Iris类,用于产生5折验证所需要的数据,并且能产生不同样本数量的数据集。

# -*- coding: utf-8 -*-
"""
Author:CommissarMa
2018年5月23日 16点52分
"""
import numpy as np
import scipy.io as sio
 
 
class Iris(object):
  """Iris数据集
  参数:
  data:根据size裁剪出来的iris数据集
  size:每种类型的样本数量
  way:one against the rest || one against one
  
  注意:
  此处规定5折交叉验证(5-cv),所以每种类型样本的数量要是5的倍数
  多分类方式:one against the rest
  """
  
  def __init__(self,size=50,way="one against the rest"):
    """
    size:每种类型的样本数量
    """
    data=sio.loadmat("C:\\Users\\CommissarMa\\Desktop\\模式识别\\课件ppt\\PR实验内容\\iris_data.mat")
    iris_data=data['iris_data']#iris_data:原数据集,shape:150*4,1-50个样本为第一类,51-100个样本为第二类,101-150个样本为第三类
    self.size=size
    self.way=way
    self.data=np.zeros((size*3,4))
    for r in range(0,size*3):
      self.data[r]=iris_data[int(r/size)*50+r%size]
    
  
  def generate_train_data(self,index_fold,index_class,neg_class=None):
    """
    index_fold:5折验证的第几折,范围:0,1,2,3,4
    index_class:第几类作为正类,类别号:负类样本为-1,正类样本为1
    """
    if self.way=="one against the rest":
      fold_size=int(self.size/5)#将每类样本分成5份
      train_data=np.zeros((fold_size*4*3,4))
      label_data=np.full((fold_size*4*3),-1)
      for r in range(0,fold_size*4*3):
        n_class=int(r/(fold_size*4))#第几类
        n_fold=int((r%(fold_size*4))/fold_size)#第几折
        n=(r%(fold_size*4))%fold_size#第几个
        if n_fold<index_fold:
          train_data[r]=self.data[n_class*self.size+n_fold*fold_size+n]
        else:
          train_data[r]=self.data[n_class*self.size+(n_fold+1)*fold_size+n]
        
      label_data[fold_size*4*index_class:fold_size*4*(index_class+1)]=1
    elif self.way=="one against one":
      if neg_class==None:
        print("one against one模式下需要提供负类的序号!")
        return
      else:
        fold_size=int(self.size/5)#将每类样本分成5份
        train_data=np.zeros((fold_size*4*2,4))
        label_data=np.full((fold_size*4*2),-1)
        for r in range(0,fold_size*4*2):
          n_class=int(r/(fold_size*4))#第几类
          n_fold=int((r%(fold_size*4))/fold_size)#第几折
          n=(r%(fold_size*4))%fold_size#第几个
          if n_class==0:#放正类样本
            if n_fold<index_fold:
              train_data[r]=self.data[index_class*self.size+n_fold*fold_size+n]
            else:
              train_data[r]=self.data[index_class*self.size+(n_fold+1)*fold_size+n]
          if n_class==1:#放负类样本
            if n_fold<index_fold:
              train_data[r]=self.data[neg_class*self.size+n_fold*fold_size+n]
            else:
              train_data[r]=self.data[neg_class*self.size+(n_fold+1)*fold_size+n]
        label_data[0:fold_size*4]=1
    else:
      print("多分类方式错误!只能为one against one 或 one against the rest!")
      return
    
    return train_data,label_data
        
    
    
  def generate_test_data(self,index_fold):
    """生成测试数据
    index_fold:5折验证的第几折,范围:0,1,2,3,4
    
    返回值:
    test_data:对应于第index_fold折的测试数据
    label_data:类别号为0,1,2
    """
    fold_size=int(self.size/5)#将每类样本分成5份
    test_data=np.zeros((fold_size*3,4))
    label_data=np.zeros(fold_size*3)
    for r in range(0,fold_size*3):
      test_data[r]=self.data[int(int(r/fold_size)*self.size)+int(index_fold*fold_size)+r%fold_size]
    label_data[0:fold_size]=0
    label_data[fold_size:fold_size*2]=1
    label_data[fold_size*2:fold_size*3]=2
    
    return test_data,label_data

然后我们进行训练测试,先使用one against the rest策略:

# -*- coding: utf-8 -*-
 
from perceptron import Perceptron
from iris_data import Iris
import numpy as np
 
if __name__=="__main__":
   iris=Iris(size=50,way="one against the rest")
   
   correct_all=0
   for n_fold in range(0,5):
     p=[Perceptron(),Perceptron(),Perceptron()]
     for c in range(0,3):
       x,y=iris.generate_train_data(index_fold=n_fold,index_class=c)
       p[c].train(x,y)
     #训练完毕,开始测试
     correct=0
     x_test,y_test=iris.generate_test_data(index_fold=n_fold)
     num=len(x_test)
     for i in range(0,num):
       maxvalue=max(p[0].predict_value(x_test[i]),p[1].predict_value(x_test[i]),
          p[2].predict_value(x_test[i]))
       if maxvalue==p[int(y_test[i])].predict_value(x_test[i]):
         correct+=1
     print("错分数量:",num-correct,"错误率:",(num-correct)/num)
     correct_all+=correct
   print("平均错误率:",(num*5-correct_all)/(num*5))

然后使用one against one 策略去训练测试:

# -*- coding: utf-8 -*-
 
from perceptron import Perceptron
from iris_data import Iris
import numpy as np
 
if __name__=="__main__":
   iris=Iris(size=10,way="one against one")
   
   correct_all=0
   for n_fold in range(0,5):
     #训练
     p01=Perceptron()#0类和1类比较的判别器
     p02=Perceptron()
     p12=Perceptron()
     x,y=iris.generate_train_data(index_fold=n_fold,index_class=0,neg_class=1)
     p01.train(x,y)
     x,y=iris.generate_train_data(index_fold=n_fold,index_class=0,neg_class=2)
     p02.train(x,y)
     x,y=iris.generate_train_data(index_fold=n_fold,index_class=1,neg_class=2)
     p12.train(x,y)
     #测试
     correct=0
     x_test,y_test=iris.generate_test_data(index_fold=n_fold)
     num=len(x_test)
     for i in range(0,num):
       vote0=0
       vote1=0
       vote2=0
       if p01.predict_value(x_test[i])>0:
         vote0+=1
       else:
         vote1+=1
       if p02.predict_value(x_test[i])>0:
         vote0+=1
       else:
         vote2+=1
       if p12.predict_value(x_test[i])>0:
         vote1+=1
       else:
         vote2+=1
       
       if vote0==max(vote0,vote1,vote2) and int(vote0)==int(y_test[i]):
         correct+=1
       elif vote1==max(vote0,vote1,vote2) and int(vote1)==int(y_test[i]):
         correct+=1
       elif vote2==max(vote0,vote1,vote2) and int(vote2)==int(y_test[i]):
         correct+=1
     print("错分数量:",num-correct,"错误率:",(num-correct)/num)
     correct_all+=correct
   print("平均错误率:",(num*5-correct_all)/(num*5))

实验结果如图所示:

python实现感知器算法(批处理)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python使用opencv读取图片的实例
Aug 17 Python
浅谈Python实现2种文件复制的方法
Jan 19 Python
Python实现繁体中文与简体中文相互转换的方法示例
Dec 18 Python
解决Python下json.loads()中文字符出错的问题
Dec 19 Python
对Python中画图时候的线类型详解
Jul 07 Python
Pycharm远程调试原理及具体配置详解
Aug 08 Python
Django使用uwsgi部署时的配置以及django日志文件的处理方法
Aug 30 Python
Python代理IP爬虫的新手使用教程
Sep 05 Python
flask实现验证码并验证功能
Dec 05 Python
Python读取多列数据以及用matplotlib制作图表方法实例
Sep 23 Python
mac系统下安装pycharm、永久激活、中文汉化详细教程
Nov 24 Python
Python爬虫新手入门之初学lxml库
Dec 20 Python
python实现多层感知器
Jan 18 #Python
python实现多层感知器MLP(基于双月数据集)
Jan 18 #Python
基于python实现KNN分类算法
Apr 23 #Python
python实现定时发送qq消息
Jan 18 #Python
如何在Django中设置定时任务的方法示例
Jan 18 #Python
Python设计模式之工厂方法模式实例详解
Jan 18 #Python
Python设计模式之原型模式实例详解
Jan 18 #Python
You might like
S900/ ETON E1-XM 收音机
2021/03/02 无线电
PHP 强制性文件下载功能的函数代码(任意文件格式)
2010/05/26 PHP
IIS6.0中配置php服务全过程解析
2013/08/07 PHP
PHP实现检测客户端是否使用代理服务器及其匿名级别
2015/01/07 PHP
PHP简单日历实现方法
2016/07/20 PHP
PHP用FTP类上传文件视频等的简单实现方法
2016/09/23 PHP
php in_array() 检查数组中是否存在某个值详解
2016/11/23 PHP
php中html_entity_decode实现HTML实体转义
2018/06/13 PHP
jQuery Pagination Ajax分页插件(分页切换时无刷新与延迟)中文翻译版
2013/01/11 Javascript
js+html+css实现鼠标移动div实例
2013/01/30 Javascript
鼠标经过tr时,改变tr当前背景颜色
2014/01/13 Javascript
JQuery实现当鼠标停留在某区域3秒后自动执行
2014/09/09 Javascript
js同源策略详解
2015/05/21 Javascript
JavaScript优化以及前段开发小技巧
2017/02/02 Javascript
微信小程序 自动登陆PHP源码实例(源码下载)
2017/05/08 Javascript
Vue组件化通讯的实例代码
2017/06/23 Javascript
Jquery中.bind()、.live()、.delegate()和.on()之间的区别详解
2017/08/01 jQuery
jquery手机触屏滑动拼音字母城市选择器的实例代码
2017/12/11 jQuery
vue实现word,pdf文件的导出功能
2018/07/31 Javascript
jQuery中实现text()的方法
2019/04/04 jQuery
微信小程序实现定位及到指定位置导航的示例代码
2019/08/20 Javascript
用Python制作简单的朴素基数估计器的教程
2015/04/01 Python
如何利用python查找电脑文件
2018/04/27 Python
修复 Django migration 时遇到的问题解决
2018/06/14 Python
python 读取文本文件的行数据,文件.splitlines()的方法
2018/07/12 Python
Python OOP类中的几种函数或方法总结
2019/02/22 Python
matplotlib 画双轴子图无法显示x轴的解决方法
2020/07/27 Python
Pycharm常用快捷键总结及配置方法
2020/11/14 Python
html5配合css3实现带提示文字的输入框(摆脱js)
2013/03/08 HTML / CSS
Ellos丹麦:时尚和服装在线
2016/09/19 全球购物
巴西Mr. Cat在线商店:购买包包和鞋子
2019/09/08 全球购物
送货司机岗位职责
2013/12/11 职场文书
人力资源管理专业自荐书范文
2014/02/10 职场文书
留学顾问岗位职责
2014/04/14 职场文书
小学节能减排倡议书
2014/05/15 职场文书
本科毕业生自荐信
2014/05/26 职场文书