Python读取多列数据以及用matplotlib制作图表方法实例


Posted in Python onSeptember 23, 2020

多列数据的读入以及处理

这次我们用到的数据是煤炭5500周价格的最高价和最低价。左侧为价格的数据表格,右侧为日期。

Python读取多列数据以及用matplotlib制作图表方法实例

一、导入数据

这里我们就直接跳过讲解,如有不懂的,详见上一篇博客。见代码。

import matplotlib.pyplot as plt
import re
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体
plt.rcParams['axes.unicode_minus'] = False # 设置正负号
# 导入数据,日期
with open('日期.csv', encoding='gbk') as oo:
  day = oo.read()
day_str = day.replace('\n', ',') # 换行替换成逗号
day_list = re.split('[,]', day_str)
list_days = []
for s in range(len(day_list)-1): # 获得时间
  list_days.append(day_list[s])
# 将x转换成时间类型
# 导入数据,金额
with open('煤炭5500周价格波动数据.csv', encoding='gbk') as pp:
  sk = pp.read()
ll = sk.replace('\n', ',') # 换行替换成逗号
list_1 = re.split('[,]', ll) # 分割数据
list_2 = []
for s in range(len(list_1)-1):
  list_2.append(int(float(list_1[s])))

现在我们已经讲数据读取到相关的列表里,输出一下。

输出结果:
['2019/12/27', '2019/12/20', '2019/12/13', '2019/12/6', '2019/11/29', '2019/11/22', '2019/11/15', '2019/11/8', '2019/11/1', '2019/10/25', '2019/10/18', '2019/10/11', '2019/9/27', '2019/9/20', '2019/9/12', '2019/9/12', '2019/9/6', '2019/8/30', '2019/8/23', '2019/8/16', '2019/8/9', '2019/8/2', '2019/7/26', '2019/7/19', '2019/7/12', '2019/7/5', '2019/6/28', '2019/6/21', '2019/6/14', '2019/6/7', '2019/5/31', '2019/5/24', '2019/5/17', '2019/5/10', '2019/4/26', '2019/4/19', '2019/4/12', '2019/4/5', '2019/3/29', '2019/3/22', '2019/3/15', '2019/3/8', '2019/3/1', '2019/2/22', '2019/2/15', '2019/2/1', '2019/1/25', '2019/1/18', '2019/1/18', '2019/1/11', '2019/1/4', '2018/12/28']
[550, 555, 550, 555, 550, 555, 550, 555, 550, 555, 550, 555, 550, 555, 550, 555, 560, 565, 570, 575, 575, 580, 580, 585, 585, 590, 585, 590, 585, 590, 585, 590, 580, 585, 580, 585, 580, 590, 575, 585, 580, 590, 595, 600, 590, 600, 590, 595, 600, 605, 605, 615, 600, 610, 590, 600, 590, 600, 590, 600, 595, 600, 610, 620, 615, 620, 615, 620, 615, 625, 620, 625, 630, 640, 620, 630, 620, 625, 620, 630, 625, 630, 635, 645, 615, 625, 600, 605, 600, 605, 585, 590, 590, 595, 590, 595, 590, 595, 580, 590, 585, 595, 575, 580]

二、处理价格数据

我们可以看到0,2,4,6,8.......等偶数位的数值是周最低价,而单数位的数值是周最高价。我们可以用循环的方式读取到相关的数据。

代码如下。

这样就可以把数据进行分组了。以此类推,可以导入多列数据。

根据观察可以看到,时间列表是以降序的方式排列的,我们需要将数据转置过来,让列表数据改为升序。方法一、调整导入的CSV文件的数据顺序。方法二、我们引入reversed()函数。该函数有两种写法,作用主要是将列表,range(),字典里的数据进行逆向排列。

逆转对象:list_x
写法一、
xxx = reversed(list_x)
写法二、
直接使用
list(reversed(list_x))
aaa = reversed(list_average) 转置一个作为样例
# 以上分割取得list_high,low,average
# 设置x轴,y轴标签,设置表格标题
plt.xlabel('时间')
plt.ylabel('价格')
plt.title('最高价/最低价/均价周期波动图')
plt.legend(loc='upper right')
plt.figure(figsize=(9, 8))输出图片大小900px*800px

图表制作

需要的数据我们已经处理好了,接着就是生成图表。

import matplotlib.pyplot as plt
import re
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体
plt.rcParams['axes.unicode_minus'] = False # 设置正负号
# 导入数据,日期
with open('日期.csv', encoding='gbk') as oo:
  day = oo.read()
day_str = day.replace('\n', ',') # 换行替换成逗号
day_list = re.split('[,]', day_str)
list_days = []
for s in range(len(day_list)-1): # 获得时间
  list_days.append(day_list[s])
print(list_days)
# 将x转换成时间类型
# 导入数据,金额
with open('煤炭5500周价格波动数据.csv', encoding='gbk') as pp:
  sk = pp.read()
ll = sk.replace('\n', ',') # 换行替换成逗号
list_1 = re.split('[,]', ll) # 分割数据
list_2 = []
for s in range(len(list_1)-1):
  list_2.append(int(float(list_1[s])))
print(list_2)
list_high = [] # 最高
list_low = [] # 最低
list_average = [] # 均值
for k in range(len(list_2)):
  if k % 2 == 0:
    list_low.append(list_2[k])
    list_average.append((list_2[k]+list_2[k+1])/2)
  else:
    list_high.append(list_2[k])
aaa = reversed(list_average)
# 以上分割取得list_high,low,average
# 设置x轴,y轴标签,设置表格标题
plt.xlabel('时间')
plt.ylabel('价格')
plt.title('最高价/最低价/均价周期波动图')
# 设置标注
 
plt.figure(figsize=(9, 8))
 
# 制作折现图
plt.plot(range(len(list_low)), list(reversed(list_high)), label='最高价', color='brown',marker='o',markerfacecolor='c',markersize='5')
plt.plot(range(len(list_low)), list(reversed(list_low)), label='最低价', color='skyblue',marker='s',markerfacecolor='r',markersize='5')
plt.plot(range(len(list_low)), list(reversed(list_average)), label='均价', color='lawngreen',marker='h',markerfacecolor='coral',markersize='5')
# 设置标注
plt.legend(loc='upper right') # 右上upper right 右下lower right
plt.show()

这是到目前我们制作出来的折线图

Python读取多列数据以及用matplotlib制作图表方法实例

替换x轴坐标点更改成日期

这里我们使用到plt.xticks()

书写格式:
plt.xticks(被替换的数值(数据长的的列表),替换的数据,数据方向(默认横向))
plt.xticks(range(len(list_low)), list(reversed(list_days)), rotation='vertical')
vertical:数值方向,也可以写角度。

到这了我们就完成了全部的代码。

结束:最终代码

import matplotlib.pyplot as plt
import re
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体
plt.rcParams['axes.unicode_minus'] = False # 设置正负号
# 导入数据,日期
with open('日期.csv', encoding='gbk') as oo:
  day = oo.read()
day_str = day.replace('\n', ',') # 换行替换成逗号
day_list = re.split('[,]', day_str)
list_days = []
for s in range(len(day_list)-1): # 获得时间
  list_days.append(day_list[s])
print(list_days)
# 将x转换成时间类型
# 导入数据,金额
with open('煤炭5500周价格波动数据.csv', encoding='gbk') as pp:
  sk = pp.read()
ll = sk.replace('\n', ',') # 换行替换成逗号
list_1 = re.split('[,]', ll) # 分割数据
list_2 = []
for s in range(len(list_1)-1):
  list_2.append(int(float(list_1[s])))
print(list_2)
list_high = [] # 最高
list_low = [] # 最低
list_average = [] # 均值
for k in range(len(list_2)):
  if k % 2 == 0:
    list_low.append(list_2[k])
    list_average.append((list_2[k]+list_2[k+1])/2)
  else:
    list_high.append(list_2[k])
aaa = reversed(list_average)
# 以上分割取得list_high,low,average
# 设置x轴,y轴标签,设置表格标题
plt.xlabel('时间')
plt.ylabel('价格')
plt.title('最高价/最低价/均价周期波动图')
# 设置标注
 
plt.figure(figsize=(9, 8))
 
plt.xticks(range(len(list_low)), list(reversed(list_days)), rotation='vertical')
# 设置折现图
plt.plot(range(len(list_low)), list(reversed(list_high)), label='最高价', color='brown',marker='o',markerfacecolor='c',markersize='5')
plt.plot(range(len(list_low)), list(reversed(list_low)), label='最低价', color='skyblue',marker='s',markerfacecolor='r',markersize='5')
plt.plot(range(len(list_low)), list(reversed(list_average)), label='均价', color='lawngreen',marker='h',markerfacecolor='coral',markersize='5')
# 设置标注
plt.legend(loc='upper right') 
plt.show()

结果示意图:

Python读取多列数据以及用matplotlib制作图表方法实例

总结

到此这篇关于Python读取多列数据以及用matplotlib制作图片的文章就介绍到这了,更多相关Python读取多列数据用matplotlib制作图片内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python实现新浪博客备份的方法
Apr 27 Python
pytorch cnn 识别手写的字实现自建图片数据
May 20 Python
Python 中的range(),以及列表切片方法
Jul 02 Python
Python-while 计算100以内奇数和的方法
Jun 11 Python
Python3内置模块之base64编解码方法详解
Jul 13 Python
python实现银行实战系统
Feb 26 Python
解决keras,val_categorical_accuracy:,0.0000e+00问题
Jul 02 Python
Pycharm调试程序技巧小结
Aug 08 Python
python 监控logcat关键字功能
Sep 04 Python
Ubuntu20下的Django安装的方法步骤
Jan 24 Python
使用python求解迷宫问题的三种实现方法
Mar 17 Python
Python列表的索引与切片
Apr 07 Python
PyCharm 2020.2下配置Anaconda环境的方法步骤
Sep 23 #Python
python中如何打包用户自定义模块
Sep 23 #Python
python使用matplotlib绘制折线图的示例代码
Sep 22 #Python
python利用paramiko实现交换机巡检的示例
Sep 22 #Python
python批量修改交换机密码的示例
Sep 22 #Python
python爬虫构建代理ip池抓取数据库的示例代码
Sep 22 #Python
scrapy中如何设置应用cookies的方法(3种)
Sep 22 #Python
You might like
一棵php的类树(支持无限分类)
2006/10/09 PHP
解析php中获取url与物理路径的总结
2013/06/21 PHP
浅谈json_encode用法
2015/03/05 PHP
weiphp微信公众平台授权设置
2016/01/04 PHP
PHP的Yii框架中行为的定义与绑定方法讲解
2016/03/18 PHP
CI框架AR操作(数组形式)实现插入多条sql数据的方法
2016/05/18 PHP
PHP获取表单数据与HTML嵌入PHP脚本的实现
2017/02/09 PHP
作为PHP程序员你要知道的另外一种日志
2018/07/30 PHP
JavaScript String.replace函数参数实例说明
2013/06/06 Javascript
jquery动态改变div宽度和高度
2015/02/09 Javascript
纯JS焦点图特效实例(可一个页面多用)
2016/12/07 Javascript
vue实现表格增删改查效果的实例代码
2017/07/18 Javascript
详解基于Node.js的HTTP/2 Server实践
2018/05/31 Javascript
vue 纯js监听滚动条到底部的实例讲解
2018/09/03 Javascript
浅谈webpack SplitChunksPlugin实用指南
2018/09/17 Javascript
ES7之Async/await的使用详解
2019/03/28 Javascript
从0到1搭建element后台框架优化篇(打包优化)
2019/05/12 Javascript
js实现弹幕飞机效果
2020/08/27 Javascript
微信小程序中target和currentTarget的区别小结
2020/11/06 Javascript
机器学习10大经典算法详解
2017/12/07 Python
python 字典访问的三种方法小结
2019/12/05 Python
Python3爬虫中Ajax的用法
2020/07/10 Python
英国家庭珠宝商:T. H. Baker
2018/02/08 全球购物
电影T恤、80年代T恤和80年代服装:TV Store Online
2020/01/05 全球购物
VisionPros美国站:加拿大在线隐形眼镜和眼镜零售商
2020/02/11 全球购物
美国折扣香水网站:The Perfume Spot
2020/12/12 全球购物
杭州-DOTNET笔试题集
2013/09/25 面试题
出口公司经理求职简历中的自我评价
2013/10/13 职场文书
献爱心倡议书
2014/04/14 职场文书
协会周年庆活动方案
2014/08/26 职场文书
初中生思想道德自我评价
2015/03/09 职场文书
红与黑读书笔记
2015/06/29 职场文书
幼儿园教师教育随笔
2015/08/14 职场文书
2016年9月份红领巾广播稿
2015/12/21 职场文书
幼儿园2016年圣诞活动总结
2016/03/31 职场文书
导游词之千岛湖
2019/09/23 职场文书