Python OpenCV之常用滤波器使用详解


Posted in Python onApril 07, 2022

1. 滤波器

1.1 什么是滤波器

滤波器是对图像做平滑处理 的一种常用工具。

平滑处理即在尽可能地保留原图像信息的情况下,对像素值进行微调,使邻近的像素值之间,值的大小趋于“平滑”,以去除图像内的噪声、降低细节层次信息等的一系列的操作过程。本篇blog将为大家展示OpenCV中的均值滤波器 、中值滤波器 、高斯滤波器 和 双边滤波器。

滤波器的算法逻辑为,指定一个滤波核的大小(该大小表示参与计算的像素数据的范围),以图像中的每一个像素都作为波的核心,通过该范围内的数据,以一定的计算方式进行计算,将计算结果该值赋值给该像素。

1.2 关于滤波核

以大小为n×n的滤波核为例,对于每一个像素数据,我们可以在数组中得到以一个像素为中心的n×n的矩阵,此即参与计算的数据的范围(边界)。这样的矩阵结构即被称为滤波核。

1.3 素材选择

使用图像《龙门石窟》(longmen.jpg) shape:(350, 600, 3)

Python OpenCV之常用滤波器使用详解

2.均值滤波器 cv2.blur()

2.1 语法简介

均值滤波器,也称低通滤波器

顾名思义,均值滤波器即对滤波核内的数据求均值,然后将这个值赋值给矩阵核心位置。

均值滤波器可以使用cv2.blur() 方法实现

cv2.blur()的语法:

dst = blur(src, ksize, dst=None, anchor=None, borderType=None)

其中

  • scr 即图像
  • ksize 滤波核大小。使用一个元组表示,形如(a, b),a表示height(高度),b表示width(宽度)。
  • anchor 波核锚点
  • borderType 边界类型

下边以3×3,5×5,10×10三种滤波核为例,分别展示图像经过均值滤波器处理后的效果。

2.2 代码示例

2.2.1 3×3 滤波核为例

import cv2
img = cv2.imread("longmen.jpg")
dst1 = cv2.blur(img, (3, 3))
cv2.imshow("3*3", dst1)
cv2.waitKey()
cv2.destroyAllWindows()

滤波效果如下:

Python OpenCV之常用滤波器使用详解

2.2.2 5×5 滤波核为例

import cv2
img = cv2.imread("longmen.jpg")
dst2 = cv2.blur(img, (5, 5))
cv2.imshow("5*5", dst2)
cv2.waitKey()
cv2.destroyAllWindows()

滤波效果如下:

Python OpenCV之常用滤波器使用详解

2.2.3 10×10滤波核为例

import cv2
img = cv2.imread("longmen.jpg")
dst3 = cv2.blur(img, (10, 10))
cv2.imshow("10*10", dst3)
cv2.waitKey()
cv2.destroyAllWindows()

Python OpenCV之常用滤波器使用详解

可以看出,滤波核大小越大,图像越趋于模糊。

3. 中值滤波器 cv2.medianBlur()

中值滤波器,即对滤波核内所有数据排序,将中间值赋值给滤波核核心位置的数字。

medianBlur(src, ksize, dst=None)

其中 ksize必须是奇数,是偶数的话会发生报错。

不同于均值滤波器的方法,cv2.blur(),cv2.blur()的ksize参数是一个元组,而cv2.blur()的ksize参数是一个数值。

代码示例

import cv2
img = cv2.imread("longmen.jpg")
dst1 = cv2.medianBlur(img, 3)
cv2.imshow("3*3", dst1)
cv2.waitKey()
cv2.destroyAllWindows()

滤波后效果如下:

Python OpenCV之常用滤波器使用详解

4. 高斯滤波器 cv2.GaussianBlur()

高斯滤波器也被称为高斯模糊 或 高斯平滑 。

高斯滤波器可以在降低图片噪声、细节层次的同时保留更多的图像信息,使经过处理的图像呈现出“磨砂玻璃”的滤镜效果。

使用均值滤波时,每个像素都是均等权重的。使用高斯滤波器求的是不同权重下的均值,越靠近核心的像素的权重越大,约靠近边缘的像素的权重则越小。

与滤波核对应的由每个数据权重组成的矩阵结构,是一个卷积核。卷积核中所有权重值的和为1。卷积核中的数值会随着核的大小而变化。

OpenCV使用cv2.GaussianBlur()方法实现高斯滤波器。其语法如下:

GaussianBlur(src, ksize, sigmaX, dst=None, sigmaY=None, borderType=None)

其中

  • src 为目标图像
  • ksize 是滤波核大小,宽高必须是奇数 。格式为是元组形式。

修改sigmaX 和 sigmaY都会改变卷积核中的权重值。这里涉及卷积方面的知识。

borderType 是边界类型。

以9×9的滤波核为例

import cv2
img = cv2.imread("longmen.jpg")
dst1 = cv2.GaussianBlur(img, (9, 9), 0, 0)
cv2.imshow("9*9", dst1)
cv2.waitKey()
cv2.destroyAllWindows()

滤波后效果如下:

Python OpenCV之常用滤波器使用详解

5. 双边滤波器 cv2.bilateralFilter()

前三种滤波方式都会使图像变得平滑的同时,边缘区域变得模糊不清。

双边滤波是可以在滤波过程中起到保护图像边界信息作用的滤波操作方法。

其逻辑为:

如果图像在边缘区域,则加大边缘像素的权重,尽可能地让边缘区域的像素值保持不变。如果不在边缘区域(在平坦区域),则使用类似高斯滤波器的算法进行。

双边滤波器的语法为:

bilateralFilter(src, d, sigmaColor, sigmaSpace, dst=None, borderType=None)

scr 即目标图像

d过滤期间使用的每个像素邻域的直径。如果为非正,则根据sigmaSpace计算。即如果为15,则表示15×15的滤波核。

sigmaColor参与计算的颜色的范围,只有像素小于这个值时,以其为核心的滤波核才参与滤波计算。否则不参与。当sigmaColor值为255时,表示所有像素值为核心的滤波核都会参与。

sigmaSpace坐标空间的σ \sigmaσ值,σ \sigmaσ越大,参与计算的像素数量就越多。

borderType边界的样式。

还以图片"longmen.jpg"为例,

选择20×20的滤波核,

参与计算的像素值范围为:小于125的像素值;

坐标空间的σ \sigmaσ值为,200

import cv2
img = cv2.imread("longmen.jpg")
# 双边滤波,选取范围直径为15,颜色范围为125
dst = cv2.bilateralFilter(img, 15, 125, 200)
cv2.imshow("bilateral", dst)
cv2.waitKey()
cv2.destroyAllWindows()

双边滤波效果如下:

Python OpenCV之常用滤波器使用详解

可以看出,相比以上滤波效果,双边滤波保留了较清晰的图像边缘信息。

到此这篇关于Python OpenCV之常用滤波器使用详解的文章就介绍到这了,更多相关Python OpenCV滤波器内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
从零学python系列之从文件读取和保存数据
May 23 Python
python爬虫基本知识
Mar 05 Python
Python使用requests提交HTTP表单的方法
Dec 26 Python
pygame实现非图片按钮效果
Oct 29 Python
使用PyOpenGL绘制三维坐标系实例
Dec 24 Python
Pytorch GPU显存充足却显示out of memory的解决方式
Jan 13 Python
浅谈matplotlib.pyplot与axes的关系
Mar 06 Python
如何利用Python识别图片中的文字
May 31 Python
Python连接mysql方法及常用参数
Sep 01 Python
如何在windows下安装配置python工具Ulipad
Oct 27 Python
python Scrapy框架原理解析
Jan 04 Python
在PyCharm中安装PaddlePaddle的方法
Feb 05 Python
python Tkinter模块使用方法详解
一行Python命令实现批量加水印
Apr 07 #Python
Python中Matplotlib的点、线形状、颜色以及绘制散点图
详解Python中*args和**kwargs的使用
Apr 07 #Python
Python列表的索引与切片
Apr 07 #Python
Python字符串的转义字符
Python字符串格式化方式
Apr 07 #Python
You might like
配置最新的PHP加MYSQL服务器
2006/10/09 PHP
如何将数据从文本导入到mysql
2006/10/09 PHP
PHP Token(令牌)设计
2008/03/15 PHP
跟我学Laravel之视图 & Response
2014/10/15 PHP
php使用iconv中文截断问题的解决方法
2015/02/11 PHP
如何实现php图片等比例缩放
2015/07/28 PHP
分享ThinkPHP3.2中关联查询解决思路
2015/09/20 PHP
php ajax confirm 删除实例详解
2019/03/06 PHP
Extjs中ComboBoxTree实现的下拉框树效果(自写)
2013/05/28 Javascript
刷新页面的几种方法小结(JS,ASP.NET)
2014/01/07 Javascript
JavaScript操作URL的相关内容集锦
2015/10/29 Javascript
js数组去重的5种算法实现
2015/11/04 Javascript
Node.js实现数据推送
2016/04/14 Javascript
JavaScript中push(),join() 函数 实例详解
2016/09/06 Javascript
JavaScript实现审核流程状态的动态显示进度条
2017/03/15 Javascript
vue2.x 父组件监听子组件事件并传回信息的方法
2017/07/17 Javascript
JS获取日期的方法实例【昨天,今天,明天,前n天,后n天的日期】
2017/09/28 Javascript
详解vue-cli 快速搭建单页应用之遇到的问题及解决办法
2018/03/01 Javascript
vue.js使用v-model实现表单元素(input) 双向数据绑定功能示例
2019/03/08 Javascript
微信小程序如何调用json数据接口并解析
2019/06/29 Javascript
Weex开发之WEEX-EROS开发踩坑(小结)
2019/10/16 Javascript
[01:03:50]DOTA2-DPC中国联赛 正赛 CDEC vs DLG BO3 第二场 2月7日
2021/03/11 DOTA
K-近邻算法的python实现代码分享
2017/12/09 Python
Python 使用with上下文实现计时功能
2018/03/09 Python
python获取命令行输入参数列表的实例代码
2018/06/23 Python
使用Python实现从各个子文件夹中复制指定文件的方法
2018/10/25 Python
Django实现文件上传下载功能
2019/10/06 Python
快时尚眼镜品牌,全国连锁眼镜店:LOHO眼镜生活
2018/10/08 全球购物
类的核心特性有哪些
2014/01/01 面试题
c++工程师面试问题
2013/08/04 面试题
大学生自我鉴定书
2014/03/24 职场文书
中专毕业生的自荐书
2014/07/01 职场文书
电影雷锋观后感
2015/06/10 职场文书
夏洛特的网观后感
2015/06/15 职场文书
导游词之白茶谷九龙峡
2019/10/23 职场文书
输入框跟随文字内容适配宽实现示例
2022/08/14 Javascript