python分布式环境下的限流器的示例


Posted in Python onOctober 26, 2017

项目中用到了限流,受限于一些实现方式上的东西,手撕了一个简单的服务端限流器。

服务端限流和客户端限流的区别,简单来说就是:

1)服务端限流

对接口请求进行限流,限制的是单位时间内请求的数量,目的是通过有损来换取高可用。

例如我们的场景是,有一个服务接收请求,处理之后,将数据bulk到Elasticsearch中进行索引存储,bulk索引是一个很耗费资源的操作,如果遭遇到请求流量激增,可能会压垮Elasticsearch(队列阻塞,内存激增),所以需要对流量的峰值做一个限制。

2)客户端限流

限制的是客户端进行访问的次数。

例如,线程池就是一个天然的限流器。限制了并发个数max_connection,多了的就放到缓冲队列里排队,排队搁不下了>queue_size就扔掉。

本文是服务端限流器。

我这个限流器的优点:

1)简单
2)管事

缺点:

1)不能做到平滑限流

例如大家尝尝说的令牌桶算法和漏桶算法(我感觉这两个算法本质上都是一个事情)可以实现平滑限流。什么是平滑限流?举个栗子,我们要限制5秒钟内访问数不超过1000,平滑限流能做到,每秒200个,5秒钟不超过1000,很平衡;非平滑限流可能,在第一秒就访问了1000次,之后的4秒钟全部限制住。•2)不灵活

只实现了秒级的限流。

支持两个场景:

1)对于单进程多线程场景(使用线程安全的Queue做全局变量)

这种场景下,只部署了一个实例,对这个实例进行限流。在生产环境中用的很少。

2)对于多进程分布式场景(使用redis做全局变量)

多实例部署,一般来说生产环境,都是这样的使用场景。

在这样的场景下,需要对流量进行整体的把控。例如,user服务部署了三个实例,对外暴露query接口,要做的是对接口级的流量限制,也就是对query这个接口整体允许多大的峰值,而不去关心到底负载到哪个实例。

题外话,这个可以通过nginx做。 

下面说一下限流器的实现吧。 

1、接口BaseRateLimiter

按照我的思路,先定义一个接口,也可以叫抽象类。

初始化的时候,要配置rate,限流器的限速。

提供一个抽象方法,acquire(),调用这个方法,返回是否限制流量。

class BaseRateLimiter(object):

  __metaclass__ = abc.ABCMeta

  @abc.abstractmethod
  def __init__(self, rate):
    self.rate = rate

  @abc.abstractmethod
  def acquire(self, count):
    return

2、单进程多线程场景的限流ThreadingRateLimiter

继承BaseRateLimiter抽象类,使用线程安全的Queue作为全局变量,来消除竞态影响。

后台有个进程每秒钟清空一次queue;

当请求来了,调用acquire函数,queue incr一次,如果大于限速了,就返回限制。否则就允许访问。

class ThreadingRateLimiter(BaseRateLimiter):

  def __init__(self, rate):
    BaseRateLimiter.__init__(self, rate)
    self.queue = Queue.Queue()
    threading.Thread(target=self._clear_queue).start()

  def acquire(self, count=1):
    self.queue.put(1, block=False)
    return self.queue.qsize() < self.rate

  def _clear_queue(self):
    while 1:
      time.sleep(1)
      self.queue.queue.clear()

2、分布式场景下的限流DistributeRateLimiter

继承BaseRateLimiter抽象类,使用外部存储作为共享变量,外部存储的访问方式为cache。

class DistributeRateLimiter(BaseRateLimiter):

  def __init__(self, rate, cache):
    BaseRateLimiter.__init__(self, rate)
    self.cache = cache

  def acquire(self, count=1, expire=3, key=None, callback=None):
    try:
      if isinstance(self.cache, Cache):
        return self.cache.fetchToken(rate=self.rate, count=count, expire=expire, key=key)
    except Exception, ex:
      return True

为了解耦和灵活性,我们实现了Cache类。提供一个抽象方法getToken()

如果你使用redis的话,你就继承Cache抽象类,实现通过redis获取令牌的方法。

如果使用mysql的话,你就继承Cache抽象类,实现通过mysql获取令牌的方法。

cache抽象类

class Cache(object):

  __metaclass__ = abc.ABCMeta

  @abc.abstractmethod
  def __init__(self):
    self.key = "DEFAULT"
    self.namespace = "RATELIMITER"

  @abc.abstractmethod
  def fetchToken(self, rate, key=None):
    return

给出一个redis的实现RedisTokenCache

每秒钟创建一个key,并且对请求进行计数incr,当这一秒的计数值已经超过了限速rate,就拿不到token了,也就是限制流量。

对每秒钟创建出的key,让他超时expire。保证key不会持续占用存储空间。

没有什么难点,这里使用redis事务,保证incr和expire能同时执行成功。

class RedisTokenCache(Cache):

  def __init__(self, host, port, db=0, password=None, max_connections=None):
    Cache.__init__(self)
    self.redis = redis.Redis(
      connection_pool=
        redis.ConnectionPool(
          host=host, port=port, db=db,
          password=password,
          max_connections=max_connections
        ))

  def fetchToken(self, rate=100, count=1, expire=3, key=None):
    date = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
    key = ":".join([self.namespace, key if key else self.key, date])
    try:
      current = self.redis.get(key)
      if int(current if current else "0") > rate:
        raise Exception("to many requests in current second: %s" % date)
      else:
        with self.redis.pipeline() as p:
          p.multi()
          p.incr(key, count)
          p.expire(key, int(expire if expire else "3"))
          p.execute()
          return True
    except Exception, ex:
      return False

多线程场景下测试代码 

limiter = ThreadingRateLimiter(rate=10000)

def job():
  while 1:
    if not limiter.acquire():
      print '限流'
    else:
      print '正常'

threads = [threading.Thread(target=job) for i in range(10)]
for thread in threads:
  thread.start()

分布式场景下测试代码

token_cache = RedisTokenCache(host='10.93.84.53', port=6379, password='bigdata123')
limiter = DistributeRateLimiter(rate=10000, cache=token_cache)
r = redis.Redis(connection_pool=redis.ConnectionPool(host='10.93.84.53', port=6379, password='bigdata123'))

def job():
  while 1:
    if not limiter.acquire():
      print '限流'
    else:
      print '正常'

threads = [multiprocessing.Process(target=job) for i in range(10)]
for thread in threads:
  thread.start()

可以自行跑一下。 

说明:

我这里的限速都是秒级别的,例如限制每秒400次请求。有可能出现这一秒的前100ms,就来了400次请求,后900ms就全部限制住了。也就是不能平滑限流。

不过如果你后台的逻辑有队列,或者线程池这样的缓冲,这个不平滑的影响其实不大。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python的Tornado框架实现一个Web端图书展示页面
Jul 11 Python
利用Python中的pandas库对cdn日志进行分析详解
Mar 07 Python
Python实现爬取百度贴吧帖子所有楼层图片的爬虫示例
Apr 26 Python
selenium+python 去除启动的黑色cmd窗口方法
May 22 Python
python射线法判断一个点在图形区域内外
Jun 28 Python
python爬虫之爬取百度音乐的实现方法
Aug 24 Python
python框架django项目部署相关知识详解
Nov 04 Python
python add_argument()用法解析
Jan 29 Python
python实现学生管理系统开发
Jul 24 Python
Pycharm Plugins加载失败问题解决方案
Nov 28 Python
Python还能这么玩之用Python修改了班花的开机密码
Jun 04 Python
教你用Python matplotlib库制作简单的动画
Jun 11 Python
Python Nose框架编写测试用例方法
Oct 26 #Python
Python面向对象编程基础解析(二)
Oct 26 #Python
Python面向对象编程基础解析(一)
Oct 26 #Python
获取Django项目的全部url方法详解
Oct 26 #Python
Python探索之ModelForm代码详解
Oct 26 #Python
启动targetcli时遇到错误解决办法
Oct 26 #Python
Mac中Python 3环境下安装scrapy的方法教程
Oct 26 #Python
You might like
浅谈php的TS和NTS的区别
2019/03/13 PHP
原生js实现半透明遮罩层效果具体代码
2013/06/06 Javascript
js实现网页倒计时、网站已运行时间功能的代码3例
2014/04/14 Javascript
ExtJS4 表格的嵌套 rowExpander应用
2014/05/02 Javascript
Linux下编译安装php libevent扩展实例
2015/02/14 Javascript
jquery实现页面百叶窗走马灯式翻滚显示效果的方法
2015/03/12 Javascript
使用Javascript实现选择下拉菜单互移并排序
2016/02/23 Javascript
Bootstrap开发实战之响应式轮播图
2016/06/02 Javascript
js捕捉键盘事件和按键键值的方法
2016/10/10 Javascript
基于Three.js插件制作360度全景图
2016/11/29 Javascript
canvas时钟效果
2017/02/16 Javascript
node全局变量__dirname与__filename的区别
2019/01/14 Javascript
详解vue组件中使用路由方法
2019/02/12 Javascript
Nodejs核心模块之net和http的使用详解
2019/04/02 NodeJs
vue elementUI table 自定义表头和行合并的实例代码
2019/05/22 Javascript
JavaScript Array对象基本方法详解
2019/09/03 Javascript
Javascript Dom元素获取和添加详解
2019/09/24 Javascript
KnockoutJS数组比较算法实例详解
2019/11/25 Javascript
Vue实现简单的跑马灯
2020/05/25 Javascript
ES6 Generator基本使用方法示例
2020/06/06 Javascript
利用Python破解验证码实例详解
2016/12/08 Python
matplotlib绘图实例演示标记路径
2018/01/23 Python
TensorFlow损失函数专题详解
2018/04/26 Python
使用Python和Prometheus跟踪天气的使用方法
2019/05/06 Python
查看Python依赖包及其版本号信息的方法
2019/08/13 Python
Django+Uwsgi+Nginx如何实现生产环境部署
2020/07/31 Python
Python常用断言函数实例汇总
2020/11/30 Python
Gretna Green中文官网:苏格兰格林小镇
2019/10/16 全球购物
捷克建筑材料网上商店:DEK.cz
2021/03/06 全球购物
祖国在我心中演讲稿600字
2014/05/04 职场文书
2014预防青少年违法犯罪工作总结
2014/12/10 职场文书
志愿者个人总结
2015/03/03 职场文书
生产车间管理制度
2015/08/04 职场文书
校园安全主题班会
2015/08/12 职场文书
机关干部作风整顿心得体会
2016/01/22 职场文书
解决Vue+SpringBoot+Shiro跨域问题
2021/06/09 Vue.js