Posted in Python onJanuary 17, 2018
本文主要研究的是Python对内存的使用(深浅拷贝)的相关问题,具体介绍如下。
浅拷贝就是对引用的拷贝(只拷贝父对象)
深拷贝就是对对象的资源的拷贝
>>> a=[1,2,3,'a','b'] >>> b=a >>> b [1, 2, 3, 'a', 'b'] >>> a [1, 2, 3, 'a', 'b'] >>> id(a) 3021737547592 >>> id(b) 3021737547592 >>> a.append('c') >>> a [1, 2, 3, 'a', 'b', 'c'] >>> b [1, 2, 3, 'a', 'b', 'c'] >>> b.append(4) >>> b [1, 2, 3, 'a', 'b', 'c', 4] >>> a [1, 2, 3, 'a', 'b', 'c', 4]
从以上操作可以看出:将a赋值给b后,a和b的地址是一样的,无论那个发生变化,另一个都会跟着变化,始终保持相同。
>>> import copy >>> a=[1,2,3,['a','b','c']] >>> b=a >>> c=copy.copy(a) >>> b [1, 2, 3, ['a', 'b', 'c']] >>> c [1, 2, 3, ['a', 'b', 'c']] >>> id(a) 3021737548104 >>> id(b) 3021737548104 >>> id(c) 3021737494536 #浅拷贝父对象的地址不一样 >>> a.append('d') >>> a [1, 2, 3, ['a', 'b', 'c'], 'd'] >>> b [1, 2, 3, ['a', 'b', 'c'], 'd'] >>> c [1, 2, 3, ['a', 'b', 'c']] #a和c的地址不一样,因此a变化,c不变化 >>> id(a[0]) 1686357680 >>> id(c[0]) 1686357680 >>> id(a[3]) 3021737547528 >>> id(c[3]) 3021737547528 #整个父对象所占的空间不一样,但相同的内层数据的所占空间一样 >>> a[3].append('d') >>> a [1, 2, 3, ['a', 'b', 'c', 'd'], 'd'] >>> c [1, 2, 3, ['a', 'b', 'c', 'd']]#因为内层数据所占空间一样,所以a变化,c跟着变化
以上就是浅拷贝:整个父对象的地址不一样,内层数据的地址相同,操作内层数据的话,一同变化;操作对象为父对象时,拷贝对象不跟着变化。
>>> a [1, 2, 3, ['a', 'b', 'c', 'd'], 'd'] >>> d=copy.deepcopy(a) >>> d [1, 2, 3, ['a', 'b', 'c', 'd'], 'd'] >>> id(a) 3021737548104 >>> id(d) 3021737547656 #深拷贝父对象的地址不一样 >>> a.append('e') >>> a [1, 2, 3, ['a', 'b', 'c', 'd'], 'd', 'e'] >>> d [1, 2, 3, ['a', 'b', 'c', 'd'], 'd']#a和d的地址不一样,因此a变化,d不变化 >>> id(a[0]) 1686357680 >>> id(d[0]) 1686357680 >>> id(a[3]) 3021737547528 >>> id(d[3]) 3021737493256 #内层数据的地址不一样 >>> a[3].append('x') >>> a [1, 2, 3, ['a', 'b', 'c', 'd', 'x'], 'd', 'e'] >>> d [1, 2, 3, ['a', 'b', 'c', 'd'], 'd']
以上是深拷贝。
区别:
浅拷贝与原对象的内层数据地址相同;
深拷贝完全独立开来,与原对象没有任何联系。
总结
以上就是本文关于浅谈Python对内存的使用(深浅拷贝)的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
浅谈Python对内存的使用(深浅拷贝)
- Author -
powerpoint_2016声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@