python实现多层感知器MLP(基于双月数据集)


Posted in Python onJanuary 18, 2019

本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下

1、加载必要的库,生成数据集

import math
import random
import matplotlib.pyplot as plt
import numpy as np
class moon_data_class(object):
  def __init__(self,N,d,r,w):
    self.N=N
    self.w=w
   
    self.d=d
    self.r=r
  
  
  def sgn(self,x):
    if(x>0):
      return 1;
    else:
      return -1;
    
  def sig(self,x):
    return 1.0/(1+np.exp(x))
  
    
  def dbmoon(self):
    N1 = 10*self.N
    N = self.N
    r = self.r
    w2 = self.w/2
    d = self.d
    done = True
    data = np.empty(0)
    while done:
      #generate Rectangular data
      tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
      tmp_y = (r+w2)*np.random.random([N1, 1])
      tmp = np.concatenate((tmp_x, tmp_y), axis=1)
      tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
      #generate double moon data ---upper
      idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
      idx = (idx.nonzero())[0]
   
      if data.shape[0] == 0:
        data = tmp.take(idx, axis=0)
      else:
        data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
      if data.shape[0] >= N:
        done = False
    #print (data)
    db_moon = data[0:N, :]
    #print (db_moon)
    #generate double moon data ----down
    data_t = np.empty([N, 2])
    data_t[:, 0] = data[0:N, 0] + r
    data_t[:, 1] = -data[0:N, 1] - d
    db_moon = np.concatenate((db_moon, data_t), axis=0)
    return db_moon

2、定义激活函数

def rand(a,b):
  return (b-a)* random.random()+a

def sigmoid(x):
  #return np.tanh(-2.0*x)
  return 1.0/(1.0+math.exp(-x))
def sigmoid_derivate(x):
  #return -2.0*(1.0-np.tanh(-2.0*x)*np.tanh(-2.0*x))
  return x*(1-x) #sigmoid函数的导数

3、定义神经网络

class BP_NET(object):
  def __init__(self):
    self.input_n = 0
    self.hidden_n = 0
    self.output_n = 0
    self.input_cells = []
    self.bias_input_n = []
    self.bias_output = []
    self.hidden_cells = []
    self.output_cells = []
    self.input_weights = []
    self.output_weights = []
    
    self.input_correction = []
    self.output_correction = []
  
  def setup(self, ni,nh,no):
    self.input_n = ni+1#输入层+偏置项
    self.hidden_n = nh
    self.output_n = no
    self.input_cells = [1.0]*self.input_n
    self.hidden_cells = [1.0]*self.hidden_n
    self.output_cells = [1.0]*self.output_n
    
    self.input_weights = make_matrix(self.input_n,self.hidden_n)
    self.output_weights = make_matrix(self.hidden_n,self.output_n)
    
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        self.input_weights[i][h] = rand(-0.2,0.2)
    
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        self.output_weights[h][o] = rand(-2.0,2.0)
    
    self.input_correction = make_matrix(self.input_n , self.hidden_n)
    self.output_correction = make_matrix(self.hidden_n,self.output_n)
        
  def predict(self,inputs):
    for i in range(self.input_n-1):
      self.input_cells[i] = inputs[i]
    
    for j in range(self.hidden_n):
      total = 0.0
      for i in range(self.input_n):
        total += self.input_cells[i] * self.input_weights[i][j]
      self.hidden_cells[j] = sigmoid(total)
      
    for k in range(self.output_n):
      total = 0.0
      for j in range(self.hidden_n):
        total+= self.hidden_cells[j]*self.output_weights[j][k]# + self.bias_output[k]
        
      self.output_cells[k] = sigmoid(total)
    return self.output_cells[:]
  
  def back_propagate(self, case,label,learn,correct):
    #计算得到输出output_cells
    self.predict(case)
    output_deltas = [0.0]*self.output_n
    error = 0.0
    #计算误差 = 期望输出-实际输出
    for o in range(self.output_n):
      error = label[o] - self.output_cells[o] #正确结果和预测结果的误差:0,1,-1
      output_deltas[o]= sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内
 
    hidden_deltas = [0.0] * self.hidden_n
    for j in range(self.hidden_n):
      error = 0.0
      for k in range(self.output_n):
        error+= output_deltas[k]*self.output_weights[j][k]
      hidden_deltas[j] = sigmoid_derivate(self.hidden_cells[j])*error 

    for h in range(self.hidden_n):
      for o in range(self.output_n):
        change = output_deltas[o]*self.hidden_cells[h]
        #调整权重:上一层每个节点的权重学习*变化+矫正率
        self.output_weights[h][o] += learn*change 
    #更新输入->隐藏层的权重
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        change = hidden_deltas[h]*self.input_cells[i]
        self.input_weights[i][h] += learn*change 
      
      
    error = 0
    for o in range(len(label)):
      for k in range(self.output_n):
        error+= 0.5*(label[o] - self.output_cells[k])**2
      
    return error
    
  def train(self,cases,labels, limit, learn,correct=0.1):

    for i in range(limit):        
      error = 0.0
      # learn = le.arn_speed_start /float(i+1)    
      for j in range(len(cases)):
        case = cases[j]
        label = labels[j] 
             
        error+= self.back_propagate(case, label, learn,correct)
      if((i+1)%500==0):
        print("error:",error)
        
  def test(self): #学习异或

    
    N = 200
    d = -4
    r = 10
    width = 6
    
    data_source = moon_data_class(N, d, r, width)
    data = data_source.dbmoon()
    

    
    # x0 = [1 for x in range(1,401)]
    input_cells = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose()
    
    labels_pre = [[1.0] for y in range(1, 201)]
    labels_pos = [[0.0] for y in range(1, 201)]
    labels=labels_pre+labels_pos
    
    self.setup(2,5,1) #初始化神经网络:输入层,隐藏层,输出层元素个数
    self.train(input_cells,labels,2000,0.05,0.1) #可以更改
    
    test_x = []
    test_y = []
    test_p = []
    
    y_p_old = 0
  
    for x in np.arange(-15.,25.,0.1):

      for y in np.arange(-10.,10.,0.1):
        y_p =self.predict(np.array([x, y]))

        if(y_p_old <0.5 and y_p[0] > 0.5):
          test_x.append(x)
          test_y.append(y)
          test_p.append([y_p_old,y_p[0]])
        y_p_old = y_p[0]
    #画决策边界
    plt.plot( test_x, test_y, 'g--')  
    plt.plot(data[0:N, 0], data[0:N, 1], 'r*', data[N:2*N, 0], data[N:2*N, 1], 'b*')
    plt.show()  
          

if __name__ == '__main__':
  nn = BP_NET()
  nn.test()

4、运行结果

python实现多层感知器MLP(基于双月数据集)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python3中使用asyncio库进行快速数据抓取的教程
Apr 02 Python
Python线程中对join方法的运用的教程
Apr 09 Python
python 获取图片分辨率的方法
Jan 08 Python
python函数的作用域及关键字详解
Aug 20 Python
Python通过2种方法输出带颜色字体
Mar 02 Python
opencv python在视屏上截图功能的实现
Mar 05 Python
对python中return与yield的区别详解
Mar 12 Python
Python Opencv轮廓常用操作代码实例解析
Sep 01 Python
python利用xlsxwriter模块 操作 Excel
Oct 14 Python
如何使用Python自动生成报表并以邮件发送
Oct 15 Python
Python暴力破解Mysql数据的示例
Nov 09 Python
Python中re模块的元字符使用小结
Apr 07 Python
基于python实现KNN分类算法
Apr 23 #Python
python实现定时发送qq消息
Jan 18 #Python
如何在Django中设置定时任务的方法示例
Jan 18 #Python
Python设计模式之工厂方法模式实例详解
Jan 18 #Python
Python设计模式之原型模式实例详解
Jan 18 #Python
基于Python实现迪杰斯特拉和弗洛伊德算法
May 27 #Python
Python中logging实例讲解
Jan 17 #Python
You might like
德劲1104的电路分析与改良
2021/03/01 无线电
php、java、android、ios通用的3des方法(推荐)
2016/09/09 PHP
thinkphp实现分页显示功能
2016/12/03 PHP
Yii中特殊行为ActionFilter的使用方法示例
2020/10/18 PHP
Aster vs KG BO3 第一场2.18
2021/03/10 DOTA
创建一个复制UBB软件信息的链接或按钮的js代码
2008/01/06 Javascript
JQuery中对服务器控件 DropdownList, RadioButtonList, CheckboxList的操作总结
2011/06/28 Javascript
JQuery.closest(),parent(),parents()寻找父结点
2012/02/17 Javascript
利用jq让你的div居中的好方法分享
2013/11/21 Javascript
jquery 使用简明教程
2014/03/05 Javascript
js判断横竖屏及禁止浏览器滑动条示例
2014/04/29 Javascript
利用jQuery实现漂亮的圆形进度条倒计时插件
2015/09/30 Javascript
Javascript基础教程之比较null和undefined值
2016/05/16 Javascript
jQuery实现的简单悬浮层功能完整实例
2017/01/23 Javascript
原生js实现放大镜特效
2017/03/08 Javascript
通过学习bootstrop导航条学会修改bootstrop颜色基调
2017/06/11 Javascript
springMvc 前端用json的方式向后台传递对象数组方法
2018/08/07 Javascript
详解如何解决Vue和vue-template-compiler版本之间的问题
2018/09/17 Javascript
如何在Angular8.0下使用ngx-translate进行国际化配置
2019/07/24 Javascript
解决vue项目F5刷新mounted里的函数不执行问题
2019/11/05 Javascript
在Vue中使用mockjs代码实例
2020/11/25 Vue.js
Python实现端口复用实例代码
2014/07/03 Python
Python实现简单的代理服务器
2015/07/25 Python
python多行字符串拼接使用小括号的方法
2020/03/19 Python
Python语言快速上手学习方法
2018/12/14 Python
pyspark操作MongoDB的方法步骤
2019/01/04 Python
Python实现查找字符串数组最长公共前缀示例
2019/03/27 Python
Python3中_(下划线)和__(双下划线)的用途和区别
2019/04/26 Python
浅谈keras中的目标函数和优化函数MSE用法
2020/06/10 Python
英国最大的女士服装零售商:Bonmarché
2017/08/17 全球购物
台湾专柜女包:KINAZ
2019/12/26 全球购物
英国马莎百货印度官网:Marks & Spencer印度
2020/10/08 全球购物
硕士生找工作求职信
2014/07/05 职场文书
先进典型事迹材料
2014/12/29 职场文书
民事申诉状范本
2015/05/20 职场文书
小学运动会加油词
2015/07/18 职场文书