python实现多层感知器MLP(基于双月数据集)


Posted in Python onJanuary 18, 2019

本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下

1、加载必要的库,生成数据集

import math
import random
import matplotlib.pyplot as plt
import numpy as np
class moon_data_class(object):
  def __init__(self,N,d,r,w):
    self.N=N
    self.w=w
   
    self.d=d
    self.r=r
  
  
  def sgn(self,x):
    if(x>0):
      return 1;
    else:
      return -1;
    
  def sig(self,x):
    return 1.0/(1+np.exp(x))
  
    
  def dbmoon(self):
    N1 = 10*self.N
    N = self.N
    r = self.r
    w2 = self.w/2
    d = self.d
    done = True
    data = np.empty(0)
    while done:
      #generate Rectangular data
      tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
      tmp_y = (r+w2)*np.random.random([N1, 1])
      tmp = np.concatenate((tmp_x, tmp_y), axis=1)
      tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
      #generate double moon data ---upper
      idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
      idx = (idx.nonzero())[0]
   
      if data.shape[0] == 0:
        data = tmp.take(idx, axis=0)
      else:
        data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
      if data.shape[0] >= N:
        done = False
    #print (data)
    db_moon = data[0:N, :]
    #print (db_moon)
    #generate double moon data ----down
    data_t = np.empty([N, 2])
    data_t[:, 0] = data[0:N, 0] + r
    data_t[:, 1] = -data[0:N, 1] - d
    db_moon = np.concatenate((db_moon, data_t), axis=0)
    return db_moon

2、定义激活函数

def rand(a,b):
  return (b-a)* random.random()+a

def sigmoid(x):
  #return np.tanh(-2.0*x)
  return 1.0/(1.0+math.exp(-x))
def sigmoid_derivate(x):
  #return -2.0*(1.0-np.tanh(-2.0*x)*np.tanh(-2.0*x))
  return x*(1-x) #sigmoid函数的导数

3、定义神经网络

class BP_NET(object):
  def __init__(self):
    self.input_n = 0
    self.hidden_n = 0
    self.output_n = 0
    self.input_cells = []
    self.bias_input_n = []
    self.bias_output = []
    self.hidden_cells = []
    self.output_cells = []
    self.input_weights = []
    self.output_weights = []
    
    self.input_correction = []
    self.output_correction = []
  
  def setup(self, ni,nh,no):
    self.input_n = ni+1#输入层+偏置项
    self.hidden_n = nh
    self.output_n = no
    self.input_cells = [1.0]*self.input_n
    self.hidden_cells = [1.0]*self.hidden_n
    self.output_cells = [1.0]*self.output_n
    
    self.input_weights = make_matrix(self.input_n,self.hidden_n)
    self.output_weights = make_matrix(self.hidden_n,self.output_n)
    
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        self.input_weights[i][h] = rand(-0.2,0.2)
    
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        self.output_weights[h][o] = rand(-2.0,2.0)
    
    self.input_correction = make_matrix(self.input_n , self.hidden_n)
    self.output_correction = make_matrix(self.hidden_n,self.output_n)
        
  def predict(self,inputs):
    for i in range(self.input_n-1):
      self.input_cells[i] = inputs[i]
    
    for j in range(self.hidden_n):
      total = 0.0
      for i in range(self.input_n):
        total += self.input_cells[i] * self.input_weights[i][j]
      self.hidden_cells[j] = sigmoid(total)
      
    for k in range(self.output_n):
      total = 0.0
      for j in range(self.hidden_n):
        total+= self.hidden_cells[j]*self.output_weights[j][k]# + self.bias_output[k]
        
      self.output_cells[k] = sigmoid(total)
    return self.output_cells[:]
  
  def back_propagate(self, case,label,learn,correct):
    #计算得到输出output_cells
    self.predict(case)
    output_deltas = [0.0]*self.output_n
    error = 0.0
    #计算误差 = 期望输出-实际输出
    for o in range(self.output_n):
      error = label[o] - self.output_cells[o] #正确结果和预测结果的误差:0,1,-1
      output_deltas[o]= sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内
 
    hidden_deltas = [0.0] * self.hidden_n
    for j in range(self.hidden_n):
      error = 0.0
      for k in range(self.output_n):
        error+= output_deltas[k]*self.output_weights[j][k]
      hidden_deltas[j] = sigmoid_derivate(self.hidden_cells[j])*error 

    for h in range(self.hidden_n):
      for o in range(self.output_n):
        change = output_deltas[o]*self.hidden_cells[h]
        #调整权重:上一层每个节点的权重学习*变化+矫正率
        self.output_weights[h][o] += learn*change 
    #更新输入->隐藏层的权重
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        change = hidden_deltas[h]*self.input_cells[i]
        self.input_weights[i][h] += learn*change 
      
      
    error = 0
    for o in range(len(label)):
      for k in range(self.output_n):
        error+= 0.5*(label[o] - self.output_cells[k])**2
      
    return error
    
  def train(self,cases,labels, limit, learn,correct=0.1):

    for i in range(limit):        
      error = 0.0
      # learn = le.arn_speed_start /float(i+1)    
      for j in range(len(cases)):
        case = cases[j]
        label = labels[j] 
             
        error+= self.back_propagate(case, label, learn,correct)
      if((i+1)%500==0):
        print("error:",error)
        
  def test(self): #学习异或

    
    N = 200
    d = -4
    r = 10
    width = 6
    
    data_source = moon_data_class(N, d, r, width)
    data = data_source.dbmoon()
    

    
    # x0 = [1 for x in range(1,401)]
    input_cells = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose()
    
    labels_pre = [[1.0] for y in range(1, 201)]
    labels_pos = [[0.0] for y in range(1, 201)]
    labels=labels_pre+labels_pos
    
    self.setup(2,5,1) #初始化神经网络:输入层,隐藏层,输出层元素个数
    self.train(input_cells,labels,2000,0.05,0.1) #可以更改
    
    test_x = []
    test_y = []
    test_p = []
    
    y_p_old = 0
  
    for x in np.arange(-15.,25.,0.1):

      for y in np.arange(-10.,10.,0.1):
        y_p =self.predict(np.array([x, y]))

        if(y_p_old <0.5 and y_p[0] > 0.5):
          test_x.append(x)
          test_y.append(y)
          test_p.append([y_p_old,y_p[0]])
        y_p_old = y_p[0]
    #画决策边界
    plt.plot( test_x, test_y, 'g--')  
    plt.plot(data[0:N, 0], data[0:N, 1], 'r*', data[N:2*N, 0], data[N:2*N, 1], 'b*')
    plt.show()  
          

if __name__ == '__main__':
  nn = BP_NET()
  nn.test()

4、运行结果

python实现多层感知器MLP(基于双月数据集)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python和shell实现的校验IP地址合法性脚本分享
Oct 23 Python
python中引用与复制用法实例分析
Jun 04 Python
TensorFlow搭建神经网络最佳实践
Mar 09 Python
Matplotlib中文乱码的3种解决方案
Nov 15 Python
在python中以相同顺序shuffle两个list的方法
Dec 13 Python
python 读取竖线分隔符的文本方法
Dec 20 Python
python3.4 将16进制转成字符串的实例
Jun 12 Python
详解Django将秒转换为xx天xx时xx分
Sep 27 Python
TensorFlow自定义损失函数来预测商品销售量
Feb 05 Python
tensorflow将图片保存为tfrecord和tfrecord的读取方式
Feb 17 Python
在jupyter notebook 添加 conda 环境的操作详解
Apr 10 Python
Python约瑟夫生者死者小游戏实例讲解
Jan 04 Python
基于python实现KNN分类算法
Apr 23 #Python
python实现定时发送qq消息
Jan 18 #Python
如何在Django中设置定时任务的方法示例
Jan 18 #Python
Python设计模式之工厂方法模式实例详解
Jan 18 #Python
Python设计模式之原型模式实例详解
Jan 18 #Python
基于Python实现迪杰斯特拉和弗洛伊德算法
May 27 #Python
Python中logging实例讲解
Jan 17 #Python
You might like
jQuery+PHP+ajax实现微博加载更多内容列表功能
2014/06/27 PHP
PHP动态生成指定大小随机图片的方法
2016/03/25 PHP
PHP7 新增常量
2021/03/09 PHP
Js之软键盘实现(js源码)
2007/01/30 Javascript
js返回前一页刷新本页重载页面
2014/07/29 Javascript
js实现鼠标感应图片展示的方法
2015/02/27 Javascript
js学习阶段总结(必看篇)
2016/06/16 Javascript
Vue计算属性的学习笔记
2017/03/22 Javascript
简单谈谈js的数据类型
2017/09/25 Javascript
js中getBoundingClientRect的作用及兼容方案详解
2018/02/01 Javascript
微信小程序之分享页面如何返回首页的示例
2018/03/28 Javascript
Angular6 正则表达式允许输入部分中文字符
2018/09/10 Javascript
jquery html添加元素/删除元素操作实例详解
2020/05/20 jQuery
Vue组件生命周期运行原理解析
2020/11/25 Vue.js
Python实现把utf-8格式的文件转换成gbk格式的文件
2015/01/22 Python
谈谈python中GUI的选择
2018/03/01 Python
Python List cmp()知识点总结
2019/02/18 Python
python 模拟银行转账功能过程详解
2019/08/06 Python
python Jupyter运行时间实例过程解析
2019/12/13 Python
python3实现将json对象存入Redis以及数据的导入导出
2020/07/16 Python
英国香水店:The Perfume Shop
2017/03/27 全球购物
eVitamins日本:在线购买折扣维生素、补品和草药
2019/04/04 全球购物
Booking.com德国:预订最好的酒店和住宿
2020/02/16 全球购物
五年后的职业生涯规划
2014/03/04 职场文书
初中生操行评语大全
2014/04/24 职场文书
本科毕业生应聘求职信
2014/07/06 职场文书
小学“向国旗敬礼”网上签名寄语活动总结
2014/09/27 职场文书
检察院院长群众路线教育实践活动个人整改措施
2014/10/04 职场文书
乡镇领导班子四风整顿行动工作汇报
2014/10/25 职场文书
个人借款协议书范本
2014/11/17 职场文书
2014年学校体育工作总结
2014/12/08 职场文书
统计工作个人总结
2015/03/03 职场文书
指导老师鉴定意见
2015/06/05 职场文书
中国梦党课学习心得体会
2016/01/05 职场文书
Z-Order加速Hudi大规模数据集方案分析
2022/03/31 Servers
Spring Boot实现文件上传下载
2022/08/14 Java/Android