python实现多层感知器MLP(基于双月数据集)


Posted in Python onJanuary 18, 2019

本文实例为大家分享了python实现多层感知器MLP的具体代码,供大家参考,具体内容如下

1、加载必要的库,生成数据集

import math
import random
import matplotlib.pyplot as plt
import numpy as np
class moon_data_class(object):
  def __init__(self,N,d,r,w):
    self.N=N
    self.w=w
   
    self.d=d
    self.r=r
  
  
  def sgn(self,x):
    if(x>0):
      return 1;
    else:
      return -1;
    
  def sig(self,x):
    return 1.0/(1+np.exp(x))
  
    
  def dbmoon(self):
    N1 = 10*self.N
    N = self.N
    r = self.r
    w2 = self.w/2
    d = self.d
    done = True
    data = np.empty(0)
    while done:
      #generate Rectangular data
      tmp_x = 2*(r+w2)*(np.random.random([N1, 1])-0.5)
      tmp_y = (r+w2)*np.random.random([N1, 1])
      tmp = np.concatenate((tmp_x, tmp_y), axis=1)
      tmp_ds = np.sqrt(tmp_x*tmp_x + tmp_y*tmp_y)
      #generate double moon data ---upper
      idx = np.logical_and(tmp_ds > (r-w2), tmp_ds < (r+w2))
      idx = (idx.nonzero())[0]
   
      if data.shape[0] == 0:
        data = tmp.take(idx, axis=0)
      else:
        data = np.concatenate((data, tmp.take(idx, axis=0)), axis=0)
      if data.shape[0] >= N:
        done = False
    #print (data)
    db_moon = data[0:N, :]
    #print (db_moon)
    #generate double moon data ----down
    data_t = np.empty([N, 2])
    data_t[:, 0] = data[0:N, 0] + r
    data_t[:, 1] = -data[0:N, 1] - d
    db_moon = np.concatenate((db_moon, data_t), axis=0)
    return db_moon

2、定义激活函数

def rand(a,b):
  return (b-a)* random.random()+a

def sigmoid(x):
  #return np.tanh(-2.0*x)
  return 1.0/(1.0+math.exp(-x))
def sigmoid_derivate(x):
  #return -2.0*(1.0-np.tanh(-2.0*x)*np.tanh(-2.0*x))
  return x*(1-x) #sigmoid函数的导数

3、定义神经网络

class BP_NET(object):
  def __init__(self):
    self.input_n = 0
    self.hidden_n = 0
    self.output_n = 0
    self.input_cells = []
    self.bias_input_n = []
    self.bias_output = []
    self.hidden_cells = []
    self.output_cells = []
    self.input_weights = []
    self.output_weights = []
    
    self.input_correction = []
    self.output_correction = []
  
  def setup(self, ni,nh,no):
    self.input_n = ni+1#输入层+偏置项
    self.hidden_n = nh
    self.output_n = no
    self.input_cells = [1.0]*self.input_n
    self.hidden_cells = [1.0]*self.hidden_n
    self.output_cells = [1.0]*self.output_n
    
    self.input_weights = make_matrix(self.input_n,self.hidden_n)
    self.output_weights = make_matrix(self.hidden_n,self.output_n)
    
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        self.input_weights[i][h] = rand(-0.2,0.2)
    
    for h in range(self.hidden_n):
      for o in range(self.output_n):
        self.output_weights[h][o] = rand(-2.0,2.0)
    
    self.input_correction = make_matrix(self.input_n , self.hidden_n)
    self.output_correction = make_matrix(self.hidden_n,self.output_n)
        
  def predict(self,inputs):
    for i in range(self.input_n-1):
      self.input_cells[i] = inputs[i]
    
    for j in range(self.hidden_n):
      total = 0.0
      for i in range(self.input_n):
        total += self.input_cells[i] * self.input_weights[i][j]
      self.hidden_cells[j] = sigmoid(total)
      
    for k in range(self.output_n):
      total = 0.0
      for j in range(self.hidden_n):
        total+= self.hidden_cells[j]*self.output_weights[j][k]# + self.bias_output[k]
        
      self.output_cells[k] = sigmoid(total)
    return self.output_cells[:]
  
  def back_propagate(self, case,label,learn,correct):
    #计算得到输出output_cells
    self.predict(case)
    output_deltas = [0.0]*self.output_n
    error = 0.0
    #计算误差 = 期望输出-实际输出
    for o in range(self.output_n):
      error = label[o] - self.output_cells[o] #正确结果和预测结果的误差:0,1,-1
      output_deltas[o]= sigmoid_derivate(self.output_cells[o])*error#误差稳定在0~1内
 
    hidden_deltas = [0.0] * self.hidden_n
    for j in range(self.hidden_n):
      error = 0.0
      for k in range(self.output_n):
        error+= output_deltas[k]*self.output_weights[j][k]
      hidden_deltas[j] = sigmoid_derivate(self.hidden_cells[j])*error 

    for h in range(self.hidden_n):
      for o in range(self.output_n):
        change = output_deltas[o]*self.hidden_cells[h]
        #调整权重:上一层每个节点的权重学习*变化+矫正率
        self.output_weights[h][o] += learn*change 
    #更新输入->隐藏层的权重
    for i in range(self.input_n):
      for h in range(self.hidden_n):
        change = hidden_deltas[h]*self.input_cells[i]
        self.input_weights[i][h] += learn*change 
      
      
    error = 0
    for o in range(len(label)):
      for k in range(self.output_n):
        error+= 0.5*(label[o] - self.output_cells[k])**2
      
    return error
    
  def train(self,cases,labels, limit, learn,correct=0.1):

    for i in range(limit):        
      error = 0.0
      # learn = le.arn_speed_start /float(i+1)    
      for j in range(len(cases)):
        case = cases[j]
        label = labels[j] 
             
        error+= self.back_propagate(case, label, learn,correct)
      if((i+1)%500==0):
        print("error:",error)
        
  def test(self): #学习异或

    
    N = 200
    d = -4
    r = 10
    width = 6
    
    data_source = moon_data_class(N, d, r, width)
    data = data_source.dbmoon()
    

    
    # x0 = [1 for x in range(1,401)]
    input_cells = np.array([np.reshape(data[0:2*N, 0], len(data)), np.reshape(data[0:2*N, 1], len(data))]).transpose()
    
    labels_pre = [[1.0] for y in range(1, 201)]
    labels_pos = [[0.0] for y in range(1, 201)]
    labels=labels_pre+labels_pos
    
    self.setup(2,5,1) #初始化神经网络:输入层,隐藏层,输出层元素个数
    self.train(input_cells,labels,2000,0.05,0.1) #可以更改
    
    test_x = []
    test_y = []
    test_p = []
    
    y_p_old = 0
  
    for x in np.arange(-15.,25.,0.1):

      for y in np.arange(-10.,10.,0.1):
        y_p =self.predict(np.array([x, y]))

        if(y_p_old <0.5 and y_p[0] > 0.5):
          test_x.append(x)
          test_y.append(y)
          test_p.append([y_p_old,y_p[0]])
        y_p_old = y_p[0]
    #画决策边界
    plt.plot( test_x, test_y, 'g--')  
    plt.plot(data[0:N, 0], data[0:N, 1], 'r*', data[N:2*N, 0], data[N:2*N, 1], 'b*')
    plt.show()  
          

if __name__ == '__main__':
  nn = BP_NET()
  nn.test()

4、运行结果

python实现多层感知器MLP(基于双月数据集)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中zip和unzip数据的方法
May 27 Python
Python实现线程池代码分享
Jun 21 Python
浅谈Python中函数的参数传递
Jun 21 Python
Python实现将SQLite中的数据直接输出为CVS的方法示例
Jul 13 Python
Python实现的绘制三维双螺旋线图形功能示例
Jun 23 Python
Python3 读、写Excel文件的操作方法
Oct 20 Python
Mac在python3环境下安装virtualwrapper遇到的问题及解决方法
Jul 09 Python
python3.6+selenium实现操作Frame中的页面元素
Jul 16 Python
python 多进程并行编程 ProcessPoolExecutor的实现
Oct 11 Python
SELENIUM自动化模拟键盘快捷键操作实现解析
Oct 28 Python
Django中Aggregation聚合的基本使用方法
Jul 09 Python
高考考python编程是真的吗
Jul 20 Python
基于python实现KNN分类算法
Apr 23 #Python
python实现定时发送qq消息
Jan 18 #Python
如何在Django中设置定时任务的方法示例
Jan 18 #Python
Python设计模式之工厂方法模式实例详解
Jan 18 #Python
Python设计模式之原型模式实例详解
Jan 18 #Python
基于Python实现迪杰斯特拉和弗洛伊德算法
May 27 #Python
Python中logging实例讲解
Jan 17 #Python
You might like
德劲1102收音机的打理维修案例
2021/03/02 无线电
PHP 删除文件与文件夹操作 unlink()与rmdir()这两个函数的使用
2011/07/17 PHP
PHP+Mysql日期时间如何转换(UNIX时间戳和格式化日期)
2012/07/15 PHP
php实现的单一入口应用程序实例分析
2015/09/23 PHP
学习php设计模式 php实现门面模式(Facade)
2015/12/07 PHP
PHP Curl模拟登录微信公众平台、新浪微博实例代码
2016/01/28 PHP
javascript 类方法定义还是有点区别
2009/04/15 Javascript
JavaScript学习笔记(十七)js 优化
2010/02/04 Javascript
基于JQuery的抓取博客园首页RSS的代码
2011/12/01 Javascript
jQuery中replaceWith()方法用法实例
2014/12/25 Javascript
JavaScript前端开发之实现二进制读写操作
2015/11/04 Javascript
JavaScript中的this,call,apply使用及区别详解
2016/01/29 Javascript
Winform客户端向web地址传参接收参数的方法
2016/05/17 Javascript
Avalon中文长字符截取、关键字符隐藏、自定义过滤器
2016/05/18 Javascript
全面了解javascript中的错误处理机制
2016/07/18 Javascript
浅析script标签中的defer与async属性
2016/11/30 Javascript
javascript-解决mongoose数据查询的异步操作
2016/12/22 Javascript
微信小程序 五星评价功能的实现
2017/03/09 Javascript
js学习总结_选项卡封装(实例讲解)
2017/07/13 Javascript
解决vue router使用 history 模式刷新后404问题
2017/07/19 Javascript
vue绑定的点击事件阻止冒泡的实例
2018/02/08 Javascript
webpack将js打包后的map文件详解
2018/02/22 Javascript
JS开发 富文本编辑器TinyMCE详解
2019/07/19 Javascript
ant design 日期格式化的实现
2020/10/27 Javascript
浅析Python中的getattr(),setattr(),delattr(),hasattr()
2016/06/14 Python
Python利用flask sqlalchemy实现分页效果
2020/08/02 Python
python实现拓扑排序的基本教程
2018/03/11 Python
python调用java的jar包方法
2018/12/15 Python
利用Python的turtle库绘制玫瑰教程
2019/11/23 Python
python 已知一个字符,在一个list中找出近似值或相似值实现模糊匹配
2020/02/29 Python
新锐科技Java程序员面试题
2016/07/25 面试题
工程招投标邀请书
2014/01/30 职场文书
关于中国梦的演讲稿
2014/04/23 职场文书
应聘会计求职信
2014/06/11 职场文书
《草虫的村落》教学反思
2016/02/20 职场文书
React配置子路由的实现
2021/06/03 Javascript