Python Opencv轮廓常用操作代码实例解析


Posted in Python onSeptember 01, 2020

1.颜色空间转换

使用cv2.cvtColor(input_image ,flag),flag为转换类型

常用的转换类型有:

  • BGR和灰度图的转换使用 cv2.COLOR_BGR2GRAY
  • BGR和HSV的转换使用 cv2.COLOR_BGR2HSV

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

2.二值化

  • ret, dst = cv2.threshold(src, thresh, maxval, type)
  • src:表示的是图片源(灰度图)
  • thresh:表示的是阈值(起始值)
  • maxval:表示的是最大值
  • type:表示的是这里划分的时候使用的是什么类型的算法,常用值为0(cv2.THRESH_BINARY)

返回值

ret:指定的thresh

dst: 目标图像

Python Opencv轮廓常用操作代码实例解析

ret, dst = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY)

3.查找并绘制轮廓

3.1 cv2.findContours(image, mode, method[, offset])

概述:

寻找一个二值图像的轮廓。注意黑色表示背景,白色表示物体,即在黑色背景里寻找白色物体的轮廓

参数:

  • image: 8位单通道图像。非零像素值视为1,所以图像视作二值图像
  • mode: 轮廓检索的方式
    • cv2.RETR_EXTERNAL: 只检索外部轮廓
    • cv2.RETR_LIST: 检测所有轮廓且不建立层次结构
    • cv2.RETR_CCOMP: 检测所有轮廓,建立两级层次结构。上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
    • cv2.RETR_TREE: 检测所有轮廓,建立完整的层次结构
  • method: 轮廓近似的方法
    • cv2.CHAIN_APPROX_NONE: 存储所有的轮廓点
    • cv2.CHAIN_APPROX_SIMPLE: 压缩水平,垂直和对角线段,只留下端点。 例如矩形轮廓可以用4个点编码
    • cv2.CHAIN_APPROX_TC89_L1,cv2.CHAIN_APPROX_TC89_KCOS:使用Teh-Chini chain近似算法
  • offset:(可选参数)轮廓点的偏移量,格式为tuple,如(-10,10)表示轮廓点沿X负方向偏移10个像素点,沿Y正方向偏移10个像素点

返回值:

  • contours: 轮廓点。列表格式,每一个元素为一个3维数组(其形状为(n,1,2),其中n表示轮廓点个数,2表示像素点坐标),表示一个轮廓
  • hierarchy: 轮廓间的层次关系,为三维数组,形状为(1,n,4),其中n表示轮廓总个数,4指的是用4个数表示各轮廓间的相互关系。第一个数表示同级轮廓的下一个轮廓编号,第二个数表示同级轮廓的上一个轮廓的编号,第三个数表示该轮廓下一级轮廓的编号,第四个数表示该轮廓的上一级轮廓的编号

补充: 若想得到轮廓点的集合的列表,可使用

cnt = np.squeeze(contours[0])

3.2 cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset]]]])

参数:

  • image: 需要绘制轮廓的目标图像,注意会改变原图
  • contours: 轮廓点,上述函数cv2.findContours()的第一个返回值
  • contourIdx: 轮廓的索引,表示绘制第几个轮廓,-1表示绘制所有的轮廓
  • color: 绘制轮廓的颜色
  • thickness:(可选参数)轮廓线的宽度,-1表示填充
  • lineType:(可选参数)轮廓线型,包括cv2.LINE_4,cv2.LINE_8(默认),cv2.LINE_AA,分别表示4邻域线,8领域线,抗锯齿线(可以更好地显示曲线)
  • hierarchy:(可选参数)层级结构,上述函数cv2.findContours()的第二个返回值,配合maxLevel参数使用
  • maxLevel:(可选参数)等于0表示只绘制指定的轮廓,等于1表示绘制指定轮廓及其下一级子轮廓,等于2表示绘制指定轮廓及其所有子轮廓
  • offset:(可选参数)轮廓点的偏移量

import cv2
img = cv2.imread('D:/2.jpg',1)

img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, dst = cv2.threshold(img_gray, 200, 255, cv2.THRESH_BINARY)

contours,hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(img, contours, -1, (0, 255, 0), 3)

cv2.imshow('img',img)
cv2.waitKey(0)

4.点与轮廓位置关系

此功能可查找图像中的点与轮廓之间的最短距离。当点在轮廓外时返回负值,当点在内部时返回正值,如果点在轮廓上则返回零

dist = cv2.pointPolygonTest(cnt, (100, 100), True)

检查(100,100)与轮廓(cnt)的距离

在函数中,第二个参数需要tuple类型;第三个参数是measureDist。 如果为True,则查找距离. 如果为False,则查找该点是在内部还是外部或在轮廓上(它分别返回+1,-1,0)

如果不需要到距离,请确保第三个参数为False,因为这是一个耗时的过程。因此,将其设为False可提供2-3倍的加速

5.直线拟合fitline函数

output = cv2.fitLine(InputArray points, distType, param, reps, aeps)

参数:

  • InputArray Points: 待拟合的直线的集合,必须是矩阵形式(如numpy.array)
  • distType: 距离类型。fitline为距离最小化函数,拟合直线时,要使输入点到拟合直线的距离和最小化。这里的距离的类型有以下几种:
    • cv2.DIST_USER : User defined distance
    • cv2.DIST_L1: distance = |x1-x2| + |y1-y2|
    • cv2.DIST_L2: 欧式距离,此时与最小二乘法相同
    • cv2.DIST_C: distance = max(|x1-x2|,|y1-y2|)
    • cv2.DIST_L12: L1-L2 metric: distance = 2(sqrt(1+x*x/2) - 1))
    • cv2.DIST_FAIR
    • cv2.DIST_WELSCH
    • cv2.DIST_HUBER
  • param: 距离参数,跟所选的距离类型有关,值可以设置为0
  • reps,aeps: 第5/6个参数用于表示拟合直线所需要的径向和角度精度,通常情况下两个值均被设定为1e-2

返回值:

output:对于二维直线,输出output为4维,前两维代表拟合出的直线的方向,后两位代表直线上的一点。(即通常说的点斜式直线)

loc = np.array(loc)
output = cv2.fitLine(loc, cv2.DIST_L2, 0, 0.01, 0.01)
k = output[1] / output[0]
b = output[3] - k * output[2]#k[key]报错?

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python连接oracle数据库实例
Oct 17 Python
python遍历类中所有成员的方法
Mar 18 Python
Python编写Windows Service服务程序
Jan 04 Python
Python实现pdf文档转txt的方法示例
Jan 19 Python
对python 生成拼接xml报文的示例详解
Dec 28 Python
关于Tensorflow使用CPU报错的解决方式
Feb 05 Python
Keras: model实现固定部分layer,训练部分layer操作
Jun 28 Python
python绘制趋势图的示例
Sep 17 Python
Django中日期时间型字段进行年月日时分秒分组统计
Nov 27 Python
Python爬虫制作翻译程序的示例代码
Feb 22 Python
Python3 如何开启自带http服务
May 18 Python
Python如何加载模型并查看网络
Jul 15 Python
聊聊python中的异常嵌套
Sep 01 #Python
理解Django 中Call Stack机制的小Demo
Sep 01 #Python
如何快速理解python的垃圾回收机制
Sep 01 #Python
Python Opencv图像处理基本操作代码详解
Aug 31 #Python
Python Matplotlib绘图基础知识代码解析
Aug 31 #Python
一些关于python 装饰器的个人理解
Aug 31 #Python
Python常用模块函数代码汇总解析
Aug 31 #Python
You might like
php+mysql实现无限级分类 | 树型显示分类关系
2006/11/19 PHP
ThinkPHP实现图片上传操作的方法详解
2017/05/08 PHP
PHP实现对xml的增删改查操作案例分析
2017/05/19 PHP
事件模型在各浏览器中存在差异
2010/10/20 Javascript
jQuery中调用WebService方法小结
2011/03/28 Javascript
如何从jQuery的ajax请求中删除X-Requested-With
2013/12/11 Javascript
Javascript实现单张图片浏览
2014/12/18 Javascript
javascript实现点击按钮让DIV层弹性移动的方法
2015/02/24 Javascript
JavaScript中扩展Array contains方法实例
2020/08/23 Javascript
jquery实现全选和全不选功能效果的实现代码【推荐】
2016/05/05 Javascript
基于Jquery插件Uploadify实现实时显示进度条上传图片
2020/03/26 Javascript
基于原生JS实现图片裁剪
2016/08/01 Javascript
javascript设计模式之策略模式学习笔记
2017/02/15 Javascript
Angular中支持SCSS的方法
2017/11/18 Javascript
使用Vue-cli 3.0搭建Vue项目的方法
2018/06/07 Javascript
vue实现组件之间传值功能示例
2018/07/13 Javascript
Element Table的row-class-name无效与动态高亮显示选中行背景色
2018/11/30 Javascript
如何在微信小程序里面退出小程序的方法
2019/04/28 Javascript
Centos7 安装Node.js10以上版本的方法步骤
2019/10/15 Javascript
利用Vue实现简易播放器的完整代码
2020/12/30 Vue.js
python使用邻接矩阵构造图代码示例
2017/11/10 Python
python实现简单淘宝秒杀功能
2018/05/03 Python
Python Unittest根据不同测试环境跳过用例的方法
2018/12/16 Python
python全栈要学什么 python全栈学习路线
2019/06/28 Python
django数据关系一对多、多对多模型、自关联的建立
2019/07/24 Python
基于Python实现全自动下载抖音视频
2020/11/06 Python
Pytorch 图像变换函数集合小结
2021/02/01 Python
奥巴马胜选演讲稿
2014/05/15 职场文书
整改落实情况汇报材料
2014/10/29 职场文书
2014年依法行政工作总结
2014/11/19 职场文书
幼儿园大班开学寄语(2015秋季)
2015/05/27 职场文书
领导新年致辞2016
2015/07/29 职场文书
《烈火英雄》观后感:致敬和平时代的英雄
2019/11/11 职场文书
Pytorch实现图像识别之数字识别(附详细注释)
2021/05/11 Python
python-opencv 中值滤波{cv2.medianBlur(src, ksize)}的用法
2021/06/05 Python
Java实现HTML转为Word的示例代码
2022/06/28 Java/Android