详解tensorflow之过拟合问题实战


Posted in Python onNovember 01, 2020

过拟合问题实战

1.构建数据集

我们使用的数据集样本特性向量长度为 2,标签为 0 或 1,分别代表了 2 种类别。借助于 scikit-learn 库中提供的 make_moons 工具我们可以生成任意多数据的训练集。

import matplotlib.pyplot as plt
# 导入数据集生成工具
import numpy as np
import seaborn as sns
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers, Sequential, regularizers
from mpl_toolkits.mplot3d import Axes3D

为了演示过拟合现象,我们只采样了 1000 个样本数据,同时添加标准差为 0.25 的高斯噪声数据:

def load_dataset():
 # 采样点数
 N_SAMPLES = 1000
 # 测试数量比率
 TEST_SIZE = None

 # 从 moon 分布中随机采样 1000 个点,并切分为训练集-测试集
 X, y = make_moons(n_samples=N_SAMPLES, noise=0.25, random_state=100)
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=42)
 return X, y, X_train, X_test, y_train, y_test

make_plot 函数可以方便地根据样本的坐标 X 和样本的标签 y 绘制出数据的分布图:

def make_plot(X, y, plot_name, file_name, XX=None, YY=None, preds=None, dark=False, output_dir=OUTPUT_DIR):
 # 绘制数据集的分布, X 为 2D 坐标, y 为数据点的标签
 if dark:
  plt.style.use('dark_background')
 else:
  sns.set_style("whitegrid")
 axes = plt.gca()
 axes.set_xlim([-2, 3])
 axes.set_ylim([-1.5, 2])
 axes.set(xlabel="$x_1$", ylabel="$x_2$")
 plt.title(plot_name, fontsize=20, fontproperties='SimHei')
 plt.subplots_adjust(left=0.20)
 plt.subplots_adjust(right=0.80)
 if XX is not None and YY is not None and preds is not None:
  plt.contourf(XX, YY, preds.reshape(XX.shape), 25, alpha=0.08, cmap=plt.cm.Spectral)
  plt.contour(XX, YY, preds.reshape(XX.shape), levels=[.5], cmap="Greys", vmin=0, vmax=.6)
 # 绘制散点图,根据标签区分颜色m=markers
 markers = ['o' if i == 1 else 's' for i in y.ravel()]
 mscatter(X[:, 0], X[:, 1], c=y.ravel(), s=20, cmap=plt.cm.Spectral, edgecolors='none', m=markers, ax=axes)
 # 保存矢量图
 plt.savefig(output_dir + '/' + file_name)
 plt.close()
def mscatter(x, y, ax=None, m=None, **kw):
 import matplotlib.markers as mmarkers
 if not ax: ax = plt.gca()
 sc = ax.scatter(x, y, **kw)
 if (m is not None) and (len(m) == len(x)):
  paths = []
  for marker in m:
   if isinstance(marker, mmarkers.MarkerStyle):
    marker_obj = marker
   else:
    marker_obj = mmarkers.MarkerStyle(marker)
   path = marker_obj.get_path().transformed(
    marker_obj.get_transform())
   paths.append(path)
  sc.set_paths(paths)
 return sc
X, y, X_train, X_test, y_train, y_test = load_dataset()
make_plot(X,y,"haha",'月牙形状二分类数据集分布.svg')

详解tensorflow之过拟合问题实战

2.网络层数的影响

为了探讨不同的网络深度下的过拟合程度,我们共进行了 5 次训练实验。在? ∈ [0,4]时,构建网络层数为n + 2层的全连接层网络,并通过 Adam 优化器训练 500 个 Epoch

def network_layers_influence(X_train, y_train):
 # 构建 5 种不同层数的网络
 for n in range(5):
  # 创建容器
  model = Sequential()
  # 创建第一层
  model.add(layers.Dense(8, input_dim=2, activation='relu'))
  # 添加 n 层,共 n+2 层
  for _ in range(n):
   model.add(layers.Dense(32, activation='relu'))
  # 创建最末层
  model.add(layers.Dense(1, activation='sigmoid'))
  # 模型装配与训练
  model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
  model.fit(X_train, y_train, epochs=N_EPOCHS, verbose=1)
  # 绘制不同层数的网络决策边界曲线
  # 可视化的 x 坐标范围为[-2, 3]
  xx = np.arange(-2, 3, 0.01)
  # 可视化的 y 坐标范围为[-1.5, 2]
  yy = np.arange(-1.5, 2, 0.01)
  # 生成 x-y 平面采样网格点,方便可视化
  XX, YY = np.meshgrid(xx, yy)
  preds = model.predict_classes(np.c_[XX.ravel(), YY.ravel()])
  print(preds)
  title = "网络层数:{0}".format(2 + n)
  file = "网络容量_%i.png" % (2 + n)
  make_plot(X_train, y_train, title, file, XX, YY, preds, output_dir=OUTPUT_DIR + '/network_layers')

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

3.Dropout的影响

为了探讨 Dropout 层对网络训练的影响,我们共进行了 5 次实验,每次实验使用 7 层的全连接层网络进行训练,但是在全连接层中间隔插入 0~4 个 Dropout 层并通过 Adam优化器训练 500 个 Epoch

def dropout_influence(X_train, y_train):
 # 构建 5 种不同数量 Dropout 层的网络
 for n in range(5):
  # 创建容器
  model = Sequential()
  # 创建第一层
  model.add(layers.Dense(8, input_dim=2, activation='relu'))
  counter = 0
  # 网络层数固定为 5
  for _ in range(5):
   model.add(layers.Dense(64, activation='relu'))
  # 添加 n 个 Dropout 层
   if counter < n:
    counter += 1
    model.add(layers.Dropout(rate=0.5))

  # 输出层
  model.add(layers.Dense(1, activation='sigmoid'))
  # 模型装配
  model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
  # 训练
  model.fit(X_train, y_train, epochs=N_EPOCHS, verbose=1)
  # 绘制不同 Dropout 层数的决策边界曲线
  # 可视化的 x 坐标范围为[-2, 3]
  xx = np.arange(-2, 3, 0.01)
  # 可视化的 y 坐标范围为[-1.5, 2]
  yy = np.arange(-1.5, 2, 0.01)
  # 生成 x-y 平面采样网格点,方便可视化
  XX, YY = np.meshgrid(xx, yy)
  preds = model.predict_classes(np.c_[XX.ravel(), YY.ravel()])
  title = "无Dropout层" if n == 0 else "{0}层 Dropout层".format(n)
  file = "Dropout_%i.png" % n
  make_plot(X_train, y_train, title, file, XX, YY, preds, output_dir=OUTPUT_DIR + '/dropout')

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

4.正则化的影响

为了探讨正则化系数?对网络模型训练的影响,我们采用 L2 正则化方式,构建了 5 层的神经网络,其中第 2,3,4 层神经网络层的权值张量 W 均添加 L2 正则化约束项:

def build_model_with_regularization(_lambda):
 # 创建带正则化项的神经网络
 model = Sequential()
 model.add(layers.Dense(8, input_dim=2, activation='relu')) # 不带正则化项
 # 2-4层均是带 L2 正则化项
 model.add(layers.Dense(256, activation='relu', kernel_regularizer=regularizers.l2(_lambda)))
 model.add(layers.Dense(256, activation='relu', kernel_regularizer=regularizers.l2(_lambda)))
 model.add(layers.Dense(256, activation='relu', kernel_regularizer=regularizers.l2(_lambda)))
 # 输出层
 model.add(layers.Dense(1, activation='sigmoid'))
 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 模型装配
 return model

下面我们首先来实现一个权重可视化的函数

def plot_weights_matrix(model, layer_index, plot_name, file_name, output_dir=OUTPUT_DIR):
 # 绘制权值范围函数
 # 提取指定层的权值矩阵
 weights = model.layers[layer_index].get_weights()[0]
 shape = weights.shape
 # 生成和权值矩阵等大小的网格坐标
 X = np.array(range(shape[1]))
 Y = np.array(range(shape[0]))
 X, Y = np.meshgrid(X, Y)
 # 绘制3D图
 fig = plt.figure()
 ax = fig.gca(projection='3d')
 ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
 ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
 ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
 plt.title(plot_name, fontsize=20, fontproperties='SimHei')
 # 绘制权值矩阵范围
 ax.plot_surface(X, Y, weights, cmap=plt.get_cmap('rainbow'), linewidth=0)
 # 设置坐标轴名
 ax.set_xlabel('网格x坐标', fontsize=16, rotation=0, fontproperties='SimHei')
 ax.set_ylabel('网格y坐标', fontsize=16, rotation=0, fontproperties='SimHei')
 ax.set_zlabel('权值', fontsize=16, rotation=90, fontproperties='SimHei')
 # 保存矩阵范围图
 plt.savefig(output_dir + "/" + file_name + ".svg")
 plt.close(fig)

在保持网络结构不变的条件下,我们通过调节正则化系数 ? = 0.00001,0.001,0.1,0.12,0.13 来测试网络的训练效果,并绘制出学习模型在训练集上的决策边界曲线

def regularizers_influence(X_train, y_train):
 for _lambda in [1e-5, 1e-3, 1e-1, 0.12, 0.13]: # 设置不同的正则化系数
  # 创建带正则化项的模型
  model = build_model_with_regularization(_lambda)
  # 模型训练
  model.fit(X_train, y_train, epochs=N_EPOCHS, verbose=1)
  # 绘制权值范围
  layer_index = 2
  plot_title = "正则化系数:{}".format(_lambda)
  file_name = "正则化网络权值_" + str(_lambda)
  # 绘制网络权值范围图
  plot_weights_matrix(model, layer_index, plot_title, file_name, output_dir=OUTPUT_DIR + '/regularizers')
  # 绘制不同正则化系数的决策边界线
  # 可视化的 x 坐标范围为[-2, 3]
  xx = np.arange(-2, 3, 0.01)
  # 可视化的 y 坐标范围为[-1.5, 2]
  yy = np.arange(-1.5, 2, 0.01)
  # 生成 x-y 平面采样网格点,方便可视化
  XX, YY = np.meshgrid(xx, yy)
  preds = model.predict_classes(np.c_[XX.ravel(), YY.ravel()])
  title = "正则化系数:{}".format(_lambda)
  file = "正则化_%g.svg" % _lambda
  make_plot(X_train, y_train, title, file, XX, YY, preds, output_dir=OUTPUT_DIR + '/regularizers')
regularizers_influence(X_train, y_train)

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

到此这篇关于详解tensorflow之过拟合问题实战的文章就介绍到这了,更多相关tensorflow 过拟合内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
python实现搜索指定目录下文件及文件内搜索指定关键词的方法
Jun 28 Python
Selenium元素的常用操作方法分析
Aug 10 Python
在cmd中查看python的安装路径方法
Jul 03 Python
对django中foreignkey的简单使用详解
Jul 28 Python
使用Pyhton集合set()实现成果查漏的例子
Nov 24 Python
Jupyter notebook 启动闪退问题的解决
Apr 13 Python
python 实现分组求和与分组累加求和代码
May 18 Python
浅谈keras 模型用于预测时的注意事项
Jun 27 Python
python -v 报错问题的解决方法
Sep 15 Python
基于Python爬取搜狐证券股票过程解析
Nov 18 Python
解决Pyinstaller打包软件失败的一个坑
Mar 04 Python
详解python中[-1]、[:-1]、[::-1]、[n::-1]使用方法
Apr 25 Python
python cookie反爬处理的实现
Nov 01 #Python
10个python爬虫入门实例(小结)
Nov 01 #Python
利用pipenv和pyenv管理多个相互独立的Python虚拟开发环境
Nov 01 #Python
Python经纬度坐标转换为距离及角度的实现
Nov 01 #Python
详解Anaconda安装tensorflow报错问题解决方法
Nov 01 #Python
python Cartopy的基础使用详解
Nov 01 #Python
Python中使用aiohttp模拟服务器出现错误问题及解决方法
Oct 31 #Python
You might like
php中截取中文字符串的代码小结
2011/07/17 PHP
php中this关键字用法分析
2016/12/07 PHP
JAVASCRIPT 对象的创建与使用
2021/03/09 Javascript
javascript 强制刷新页面的实现代码
2009/12/13 Javascript
浅析hasOwnProperty方法的应用
2013/11/20 Javascript
javascript实现2048游戏示例
2014/05/04 Javascript
超链接的禁用属性Disabled使用示例
2014/07/31 Javascript
Jquery中Event对象属性小结
2015/02/27 Javascript
EasyUI实现第二层弹出框的方法
2015/03/01 Javascript
nodejs连接mongodb数据库实现增删改查
2016/12/01 NodeJs
three.js绘制地球、飞机与轨迹的效果示例
2017/02/28 Javascript
浅谈MUI框架中加载外部网页或服务器数据的方法
2018/01/31 Javascript
详解如何在webpack中做预渲染降低首屏空白时间
2018/08/22 Javascript
vue-cli配置flexible过程详解
2019/07/04 Javascript
JS数组扁平化、去重、排序操作实例详解
2020/02/24 Javascript
Vue实现指令式动态追加小球动画组件的步骤
2020/12/18 Vue.js
[01:57]2018DOTA2亚洲邀请赛赛前采访-iG
2018/04/03 DOTA
Python中比较特别的除法运算和幂运算介绍
2015/04/05 Python
使用python编写监听端
2018/04/12 Python
Python Datetime模块和Calendar模块用法实例分析
2019/04/15 Python
阿里云ECS服务器部署django的方法
2019/08/29 Python
tensorflow没有output结点,存储成pb文件的例子
2020/01/04 Python
keras 特征图可视化实例(中间层)
2020/01/24 Python
pip安装提示Twisted错误问题(Python3.6.4安装Twisted错误)
2020/05/09 Python
简单介绍一下pyinstaller打包以及安全性的实现
2020/06/02 Python
matplotlib制作雷达图报错ValueError的实现
2021/01/05 Python
图片上传插件ImgUploadJS:用HTML5 File API 实现截图粘贴上传、拖拽上传
2016/01/20 HTML / CSS
全球性的女装店:storets
2019/06/12 全球购物
俄罗斯建筑和装饰材料在线商店:Stroilandia
2020/07/25 全球购物
信息管理专业推荐信
2013/10/29 职场文书
环境工程毕业生自荐信
2013/11/17 职场文书
中国文明网向国旗敬礼寄语大全
2014/09/27 职场文书
高中生旷课检讨书
2014/10/08 职场文书
缓刑期间思想汇报范文
2014/10/10 职场文书
导游词之岳阳楼
2019/09/25 职场文书
SpringBoot系列之MongoDB Aggregations用法详解
2022/02/12 MongoDB