详解tensorflow之过拟合问题实战


Posted in Python onNovember 01, 2020

过拟合问题实战

1.构建数据集

我们使用的数据集样本特性向量长度为 2,标签为 0 或 1,分别代表了 2 种类别。借助于 scikit-learn 库中提供的 make_moons 工具我们可以生成任意多数据的训练集。

import matplotlib.pyplot as plt
# 导入数据集生成工具
import numpy as np
import seaborn as sns
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
from tensorflow.keras import layers, Sequential, regularizers
from mpl_toolkits.mplot3d import Axes3D

为了演示过拟合现象,我们只采样了 1000 个样本数据,同时添加标准差为 0.25 的高斯噪声数据:

def load_dataset():
 # 采样点数
 N_SAMPLES = 1000
 # 测试数量比率
 TEST_SIZE = None

 # 从 moon 分布中随机采样 1000 个点,并切分为训练集-测试集
 X, y = make_moons(n_samples=N_SAMPLES, noise=0.25, random_state=100)
 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=TEST_SIZE, random_state=42)
 return X, y, X_train, X_test, y_train, y_test

make_plot 函数可以方便地根据样本的坐标 X 和样本的标签 y 绘制出数据的分布图:

def make_plot(X, y, plot_name, file_name, XX=None, YY=None, preds=None, dark=False, output_dir=OUTPUT_DIR):
 # 绘制数据集的分布, X 为 2D 坐标, y 为数据点的标签
 if dark:
  plt.style.use('dark_background')
 else:
  sns.set_style("whitegrid")
 axes = plt.gca()
 axes.set_xlim([-2, 3])
 axes.set_ylim([-1.5, 2])
 axes.set(xlabel="$x_1$", ylabel="$x_2$")
 plt.title(plot_name, fontsize=20, fontproperties='SimHei')
 plt.subplots_adjust(left=0.20)
 plt.subplots_adjust(right=0.80)
 if XX is not None and YY is not None and preds is not None:
  plt.contourf(XX, YY, preds.reshape(XX.shape), 25, alpha=0.08, cmap=plt.cm.Spectral)
  plt.contour(XX, YY, preds.reshape(XX.shape), levels=[.5], cmap="Greys", vmin=0, vmax=.6)
 # 绘制散点图,根据标签区分颜色m=markers
 markers = ['o' if i == 1 else 's' for i in y.ravel()]
 mscatter(X[:, 0], X[:, 1], c=y.ravel(), s=20, cmap=plt.cm.Spectral, edgecolors='none', m=markers, ax=axes)
 # 保存矢量图
 plt.savefig(output_dir + '/' + file_name)
 plt.close()
def mscatter(x, y, ax=None, m=None, **kw):
 import matplotlib.markers as mmarkers
 if not ax: ax = plt.gca()
 sc = ax.scatter(x, y, **kw)
 if (m is not None) and (len(m) == len(x)):
  paths = []
  for marker in m:
   if isinstance(marker, mmarkers.MarkerStyle):
    marker_obj = marker
   else:
    marker_obj = mmarkers.MarkerStyle(marker)
   path = marker_obj.get_path().transformed(
    marker_obj.get_transform())
   paths.append(path)
  sc.set_paths(paths)
 return sc
X, y, X_train, X_test, y_train, y_test = load_dataset()
make_plot(X,y,"haha",'月牙形状二分类数据集分布.svg')

详解tensorflow之过拟合问题实战

2.网络层数的影响

为了探讨不同的网络深度下的过拟合程度,我们共进行了 5 次训练实验。在? ∈ [0,4]时,构建网络层数为n + 2层的全连接层网络,并通过 Adam 优化器训练 500 个 Epoch

def network_layers_influence(X_train, y_train):
 # 构建 5 种不同层数的网络
 for n in range(5):
  # 创建容器
  model = Sequential()
  # 创建第一层
  model.add(layers.Dense(8, input_dim=2, activation='relu'))
  # 添加 n 层,共 n+2 层
  for _ in range(n):
   model.add(layers.Dense(32, activation='relu'))
  # 创建最末层
  model.add(layers.Dense(1, activation='sigmoid'))
  # 模型装配与训练
  model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
  model.fit(X_train, y_train, epochs=N_EPOCHS, verbose=1)
  # 绘制不同层数的网络决策边界曲线
  # 可视化的 x 坐标范围为[-2, 3]
  xx = np.arange(-2, 3, 0.01)
  # 可视化的 y 坐标范围为[-1.5, 2]
  yy = np.arange(-1.5, 2, 0.01)
  # 生成 x-y 平面采样网格点,方便可视化
  XX, YY = np.meshgrid(xx, yy)
  preds = model.predict_classes(np.c_[XX.ravel(), YY.ravel()])
  print(preds)
  title = "网络层数:{0}".format(2 + n)
  file = "网络容量_%i.png" % (2 + n)
  make_plot(X_train, y_train, title, file, XX, YY, preds, output_dir=OUTPUT_DIR + '/network_layers')

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

3.Dropout的影响

为了探讨 Dropout 层对网络训练的影响,我们共进行了 5 次实验,每次实验使用 7 层的全连接层网络进行训练,但是在全连接层中间隔插入 0~4 个 Dropout 层并通过 Adam优化器训练 500 个 Epoch

def dropout_influence(X_train, y_train):
 # 构建 5 种不同数量 Dropout 层的网络
 for n in range(5):
  # 创建容器
  model = Sequential()
  # 创建第一层
  model.add(layers.Dense(8, input_dim=2, activation='relu'))
  counter = 0
  # 网络层数固定为 5
  for _ in range(5):
   model.add(layers.Dense(64, activation='relu'))
  # 添加 n 个 Dropout 层
   if counter < n:
    counter += 1
    model.add(layers.Dropout(rate=0.5))

  # 输出层
  model.add(layers.Dense(1, activation='sigmoid'))
  # 模型装配
  model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
  # 训练
  model.fit(X_train, y_train, epochs=N_EPOCHS, verbose=1)
  # 绘制不同 Dropout 层数的决策边界曲线
  # 可视化的 x 坐标范围为[-2, 3]
  xx = np.arange(-2, 3, 0.01)
  # 可视化的 y 坐标范围为[-1.5, 2]
  yy = np.arange(-1.5, 2, 0.01)
  # 生成 x-y 平面采样网格点,方便可视化
  XX, YY = np.meshgrid(xx, yy)
  preds = model.predict_classes(np.c_[XX.ravel(), YY.ravel()])
  title = "无Dropout层" if n == 0 else "{0}层 Dropout层".format(n)
  file = "Dropout_%i.png" % n
  make_plot(X_train, y_train, title, file, XX, YY, preds, output_dir=OUTPUT_DIR + '/dropout')

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

4.正则化的影响

为了探讨正则化系数?对网络模型训练的影响,我们采用 L2 正则化方式,构建了 5 层的神经网络,其中第 2,3,4 层神经网络层的权值张量 W 均添加 L2 正则化约束项:

def build_model_with_regularization(_lambda):
 # 创建带正则化项的神经网络
 model = Sequential()
 model.add(layers.Dense(8, input_dim=2, activation='relu')) # 不带正则化项
 # 2-4层均是带 L2 正则化项
 model.add(layers.Dense(256, activation='relu', kernel_regularizer=regularizers.l2(_lambda)))
 model.add(layers.Dense(256, activation='relu', kernel_regularizer=regularizers.l2(_lambda)))
 model.add(layers.Dense(256, activation='relu', kernel_regularizer=regularizers.l2(_lambda)))
 # 输出层
 model.add(layers.Dense(1, activation='sigmoid'))
 model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # 模型装配
 return model

下面我们首先来实现一个权重可视化的函数

def plot_weights_matrix(model, layer_index, plot_name, file_name, output_dir=OUTPUT_DIR):
 # 绘制权值范围函数
 # 提取指定层的权值矩阵
 weights = model.layers[layer_index].get_weights()[0]
 shape = weights.shape
 # 生成和权值矩阵等大小的网格坐标
 X = np.array(range(shape[1]))
 Y = np.array(range(shape[0]))
 X, Y = np.meshgrid(X, Y)
 # 绘制3D图
 fig = plt.figure()
 ax = fig.gca(projection='3d')
 ax.xaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
 ax.yaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
 ax.zaxis.set_pane_color((1.0, 1.0, 1.0, 0.0))
 plt.title(plot_name, fontsize=20, fontproperties='SimHei')
 # 绘制权值矩阵范围
 ax.plot_surface(X, Y, weights, cmap=plt.get_cmap('rainbow'), linewidth=0)
 # 设置坐标轴名
 ax.set_xlabel('网格x坐标', fontsize=16, rotation=0, fontproperties='SimHei')
 ax.set_ylabel('网格y坐标', fontsize=16, rotation=0, fontproperties='SimHei')
 ax.set_zlabel('权值', fontsize=16, rotation=90, fontproperties='SimHei')
 # 保存矩阵范围图
 plt.savefig(output_dir + "/" + file_name + ".svg")
 plt.close(fig)

在保持网络结构不变的条件下,我们通过调节正则化系数 ? = 0.00001,0.001,0.1,0.12,0.13 来测试网络的训练效果,并绘制出学习模型在训练集上的决策边界曲线

def regularizers_influence(X_train, y_train):
 for _lambda in [1e-5, 1e-3, 1e-1, 0.12, 0.13]: # 设置不同的正则化系数
  # 创建带正则化项的模型
  model = build_model_with_regularization(_lambda)
  # 模型训练
  model.fit(X_train, y_train, epochs=N_EPOCHS, verbose=1)
  # 绘制权值范围
  layer_index = 2
  plot_title = "正则化系数:{}".format(_lambda)
  file_name = "正则化网络权值_" + str(_lambda)
  # 绘制网络权值范围图
  plot_weights_matrix(model, layer_index, plot_title, file_name, output_dir=OUTPUT_DIR + '/regularizers')
  # 绘制不同正则化系数的决策边界线
  # 可视化的 x 坐标范围为[-2, 3]
  xx = np.arange(-2, 3, 0.01)
  # 可视化的 y 坐标范围为[-1.5, 2]
  yy = np.arange(-1.5, 2, 0.01)
  # 生成 x-y 平面采样网格点,方便可视化
  XX, YY = np.meshgrid(xx, yy)
  preds = model.predict_classes(np.c_[XX.ravel(), YY.ravel()])
  title = "正则化系数:{}".format(_lambda)
  file = "正则化_%g.svg" % _lambda
  make_plot(X_train, y_train, title, file, XX, YY, preds, output_dir=OUTPUT_DIR + '/regularizers')
regularizers_influence(X_train, y_train)

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

详解tensorflow之过拟合问题实战

到此这篇关于详解tensorflow之过拟合问题实战的文章就介绍到这了,更多相关tensorflow 过拟合内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python脚本实现网卡流量监控
Feb 14 Python
Python使用BeautifulSoup库解析HTML基本使用教程
Mar 31 Python
使用Python对Excel进行读写操作
Mar 30 Python
python利用正则表达式排除集合中字符的功能示例
Oct 10 Python
Python机器学习logistic回归代码解析
Jan 17 Python
解决pycharm中opencv-python导入cv2后无法自动补全的问题(不用作任何文件上的修改)
Mar 05 Python
pycharm解决关闭flask后依旧可以访问服务的问题
Apr 03 Python
JAVA及PYTHON质数计算代码对比解析
Jun 10 Python
python中pop()函数的语法与实例
Dec 01 Python
python判断all函数输出结果是否为true的方法
Dec 03 Python
利用Python过滤相似文本的简单方法示例
Feb 03 Python
Python 里最强的地图绘制神器
Mar 01 Python
python cookie反爬处理的实现
Nov 01 #Python
10个python爬虫入门实例(小结)
Nov 01 #Python
利用pipenv和pyenv管理多个相互独立的Python虚拟开发环境
Nov 01 #Python
Python经纬度坐标转换为距离及角度的实现
Nov 01 #Python
详解Anaconda安装tensorflow报错问题解决方法
Nov 01 #Python
python Cartopy的基础使用详解
Nov 01 #Python
Python中使用aiohttp模拟服务器出现错误问题及解决方法
Oct 31 #Python
You might like
LotusPhp笔记之:Cookie组件的使用详解
2013/05/06 PHP
php读取mysql中文数据出现乱码的解决方法
2013/08/16 PHP
php轻松实现文件上传功能
2016/03/03 PHP
php+redis实现商城秒杀功能
2020/11/19 PHP
document.all还是document.getElementsByName?
2006/07/21 Javascript
jQuery中将函数赋值给变量的调用方法
2012/03/23 Javascript
JQuery文字列表向上滚动的代码
2013/11/13 Javascript
javascript 回到顶部效果的实现代码
2014/02/17 Javascript
jQuery无刷新分页完整实例代码
2015/10/27 Javascript
今天抽时间给大家整理jquery和ajax的相关知识
2015/11/17 Javascript
node.js中的事件处理机制详解
2016/11/26 Javascript
Bootstrap的modal拖动效果
2016/12/25 Javascript
Vue.js实现表格动态增加删除的方法(附源码下载)
2017/01/20 Javascript
微信小程序网络请求wx.request详解及实例
2017/05/18 Javascript
详解NODEJS的http实现
2018/01/04 NodeJs
nodejs express配置自签名https服务器的方法
2018/05/22 NodeJs
JS实现监控微信小程序的原理
2018/06/15 Javascript
Taro集成Redux快速上手的方法示例
2018/06/21 Javascript
Vue.js 图标选择组件实践详解
2018/12/03 Javascript
mpvue开发音频类小程序踩坑和建议详解
2019/03/12 Javascript
nodejs检测因特网是否断开的解决方案
2019/04/17 NodeJs
浅谈Vue3.0新版API之composition-api入坑指南
2020/04/30 Javascript
PHP webshell检查工具 python实现代码
2009/09/15 Python
pydev使用wxpython找不到路径的解决方法
2013/02/10 Python
Python进程间通信用法实例
2015/06/04 Python
Python多进程机制实例详解
2015/07/02 Python
利用python画一颗心的方法示例
2017/01/31 Python
python机器学习之神经网络(二)
2017/12/20 Python
python统计字母、空格、数字等字符个数的实例
2018/06/29 Python
利用Python半自动化生成Nessus报告的方法
2019/03/19 Python
使用matplotlib动态刷新指定曲线实例
2020/04/23 Python
python 实现性别识别
2020/11/21 Python
员工三分钟演讲稿
2014/08/19 职场文书
2014年前台接待工作总结
2014/12/05 职场文书
数据库的高级查询六:表连接查询:外连接(左外连接,右外连接,UNION关键字,连接中ON与WHERE的不同)
2021/04/05 MySQL
Python使用OpenCV和K-Means聚类对毕业照进行图像分割
2021/06/11 Python