基于python神经卷积网络的人脸识别


Posted in Python onMay 24, 2018

本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下

1.人脸识别整体设计方案

基于python神经卷积网络的人脸识别

客_服交互流程图:

基于python神经卷积网络的人脸识别

2.服务端代码展示

sk = socket.socket() 
# s.bind(address) 将套接字绑定到地址。在AF_INET下,以元组(host,port)的形式表示地址。 
sk.bind(("172.29.25.11",8007)) 
# 开始监听传入连接。 
sk.listen(True) 
 
while True: 
 for i in range(100): 
  # 接受连接并返回(conn,address),conn是新的套接字对象,可以用来接收和发送数据。address是连接客户端的地址。 
  conn,address = sk.accept() 
 
  # 建立图片存储路径 
  path = str(i+1) + '.jpg' 
 
  # 接收图片大小(字节数) 
  size = conn.recv(1024) 
  size_str = str(size,encoding="utf-8") 
  size_str = size_str[2 :] 
  file_size = int(size_str) 
 
  # 响应接收完成 
  conn.sendall(bytes('finish', encoding="utf-8")) 
 
  # 已经接收数据大小 has_size 
  has_size = 0 
  # 创建图片并写入数据 
  f = open(path,"wb") 
  while True: 
   # 获取 
   if file_size == has_size: 
    break 
   date = conn.recv(1024) 
   f.write(date) 
   has_size += len(date) 
  f.close() 
 
  # 图片缩放 
  resize(path) 
  # cut_img(path):图片裁剪成功返回True;失败返回False 
  if cut_img(path): 
   yuchuli() 
   result = test('test.jpg') 
   conn.sendall(bytes(result,encoding="utf-8")) 
  else: 
   print('falue') 
   conn.sendall(bytes('人眼检测失败,请保持图片眼睛清晰',encoding="utf-8")) 
  conn.close()

3.图片预处理

1)图片缩放

# 根据图片大小等比例缩放图片 
def resize(path): 
 image=cv2.imread(path,0) 
 row,col = image.shape 
 if row >= 2500: 
  x,y = int(row/5),int(col/5) 
 elif row >= 2000: 
  x,y = int(row/4),int(col/4) 
 elif row >= 1500: 
  x,y = int(row/3),int(col/3) 
 elif row >= 1000: 
  x,y = int(row/2),int(col/2) 
 else: 
  x,y = row,col 
 # 缩放函数 
 res=cv2.resize(image,(y,x),interpolation=cv2.INTER_CUBIC) 
 cv2.imwrite(path,res)

2)直方图均衡化和中值滤波

# 直方图均衡化 
eq = cv2.equalizeHist(img) 
# 中值滤波 
lbimg=cv2.medianBlur(eq,3)

3)人眼检测

# -*- coding: utf-8 -*- 
# 检测人眼,返回眼睛数据 
 
import numpy as np 
import cv2 
 
def eye_test(path): 
 # 待检测的人脸路径 
 imagepath = path 
 
 # 获取训练好的人脸参数 
 eyeglasses_cascade = cv2.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml') 
 
 # 读取图片 
 img = cv2.imread(imagepath) 
 # 转为灰度图像 
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
 
 # 检测并获取人眼数据 
 eyeglasses = eyeglasses_cascade.detectMultiScale(gray) 
 # 人眼数为2时返回左右眼位置数据 
 if len(eyeglasses) == 2: 
  num = 0 
  for (e_gx,e_gy,e_gw,e_gh) in eyeglasses: 
   cv2.rectangle(img,(e_gx,e_gy),(e_gx+int(e_gw/2),e_gy+int(e_gh/2)),(0,0,255),2) 
   if num == 0: 
    x1,y1 = e_gx+int(e_gw/2),e_gy+int(e_gh/2) 
   else: 
    x2,y2 = e_gx+int(e_gw/2),e_gy+int(e_gh/2) 
   num += 1 
  print('eye_test') 
  return x1,y1,x2,y2 
 else: 
  return False

4)人眼对齐并裁剪

# -*- coding: utf-8 -*- 
# 人眼对齐并裁剪 
 
# 参数含义: 
# CropFace(image, eye_left, eye_right, offset_pct, dest_sz) 
# eye_left is the position of the left eye 
# eye_right is the position of the right eye 
# 比例的含义为:要保留的图像靠近眼镜的百分比, 
# offset_pct is the percent of the image you want to keep next to the eyes (horizontal, vertical direction) 
# 最后保留的图像的大小。 
# dest_sz is the size of the output image 
# 
import sys,math 
from PIL import Image 
from eye_test import eye_test 
 
 # 计算两个坐标的距离 
def Distance(p1,p2): 
 dx = p2[0]- p1[0] 
 dy = p2[1]- p1[1] 
 return math.sqrt(dx*dx+dy*dy) 
 
 # 根据参数,求仿射变换矩阵和变换后的图像。 
def ScaleRotateTranslate(image, angle, center =None, new_center =None, scale =None, resample=Image.BICUBIC): 
 if (scale is None)and (center is None): 
  return image.rotate(angle=angle, resample=resample) 
 nx,ny = x,y = center 
 sx=sy=1.0 
 if new_center: 
  (nx,ny) = new_center 
 if scale: 
  (sx,sy) = (scale, scale) 
 cosine = math.cos(angle) 
 sine = math.sin(angle) 
 a = cosine/sx 
 b = sine/sx 
 c = x-nx*a-ny*b 
 d =-sine/sy 
 e = cosine/sy 
 f = y-nx*d-ny*e 
 return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample) 
 
 # 根据所给的人脸图像,眼睛坐标位置,偏移比例,输出的大小,来进行裁剪。 
def CropFace(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.2,0.2), dest_sz = (70,70)): 
 # calculate offsets in original image 计算在原始图像上的偏移。 
 offset_h = math.floor(float(offset_pct[0])*dest_sz[0]) 
 offset_v = math.floor(float(offset_pct[1])*dest_sz[1]) 
 # get the direction 计算眼睛的方向。 
 eye_direction = (eye_right[0]- eye_left[0], eye_right[1]- eye_left[1]) 
 # calc rotation angle in radians 计算旋转的方向弧度。 
 rotation =-math.atan2(float(eye_direction[1]),float(eye_direction[0])) 
 # distance between them # 计算两眼之间的距离。 
 dist = Distance(eye_left, eye_right) 
 # calculate the reference eye-width 计算最后输出的图像两只眼睛之间的距离。 
 reference = dest_sz[0]-2.0*offset_h 
 # scale factor # 计算尺度因子。 
 scale =float(dist)/float(reference) 
 # rotate original around the left eye # 原图像绕着左眼的坐标旋转。 
 image = ScaleRotateTranslate(image, center=eye_left, angle=rotation) 
 # crop the rotated image # 剪切 
 crop_xy = (eye_left[0]- scale*offset_h, eye_left[1]- scale*offset_v) # 起点 
 crop_size = (dest_sz[0]*scale, dest_sz[1]*scale) # 大小 
 image = image.crop((int(crop_xy[0]),int(crop_xy[1]),int(crop_xy[0]+crop_size[0]),int(crop_xy[1]+crop_size[1]))) 
 # resize it 重置大小 
 image = image.resize(dest_sz, Image.ANTIALIAS) 
 return image 
 
def cut_img(path): 
 image = Image.open(path) 
 
 # 人眼识别成功返回True;否则,返回False 
 if eye_test(path): 
  print('cut_img') 
  # 获取人眼数据 
  leftx,lefty,rightx,righty = eye_test(path) 
 
  # 确定左眼和右眼位置 
  if leftx > rightx: 
   temp_x,temp_y = leftx,lefty 
   leftx,lefty = rightx,righty 
   rightx,righty = temp_x,temp_y 
 
  # 进行人眼对齐并保存截图 
  CropFace(image, eye_left=(leftx,lefty), eye_right=(rightx,righty), offset_pct=(0.30,0.30), dest_sz=(92,112)).save('test.jpg') 
  return True 
 else: 
  print('falue') 
  return False

4.用神经卷积网络训练数据

# -*- coding: utf-8 -*- 
 
from numpy import * 
import cv2 
import tensorflow as tf 
 
# 图片大小 
TYPE = 112*92 
# 训练人数 
PEOPLENUM = 42 
# 每人训练图片数 
TRAINNUM = 15 #( train_face_num ) 
# 单人训练人数加测试人数 
EACH = 21 #( test_face_num + train_face_num ) 
 
# 2维=>1维 
def img2vector1(filename): 
 img = cv2.imread(filename,0) 
 row,col = img.shape 
 vector1 = zeros((1,row*col)) 
 vector1 = reshape(img,(1,row*col)) 
 return vector1 
 
# 获取人脸数据 
def ReadData(k): 
 path = 'face_flip/' 
 train_face = zeros((PEOPLENUM*k,TYPE),float32) 
 train_face_num = zeros((PEOPLENUM*k,PEOPLENUM)) 
 test_face = zeros((PEOPLENUM*(EACH-k),TYPE),float32) 
 test_face_num = zeros((PEOPLENUM*(EACH-k),PEOPLENUM)) 
 
 # 建立42个人的训练人脸集和测试人脸集 
 for i in range(PEOPLENUM): 
  # 单前获取人 
  people_num = i + 1 
  for j in range(k): 
   #获取图片路径 
   filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' 
   #2维=>1维 
   img = img2vector1(filename) 
 
   #train_face:每一行为一幅图的数据;train_face_num:储存每幅图片属于哪个人 
   train_face[i*k+j,:] = img/255 
   train_face_num[i*k+j,people_num-1] = 1 
 
  for j in range(k,EACH): 
   #获取图片路径 
   filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' 
 
   #2维=>1维 
   img = img2vector1(filename) 
 
   # test_face:每一行为一幅图的数据;test_face_num:储存每幅图片属于哪个人 
   test_face[i*(EACH-k)+(j-k),:] = img/255 
   test_face_num[i*(EACH-k)+(j-k),people_num-1] = 1 
 
 return train_face,train_face_num,test_face,test_face_num 
 
# 获取训练和测试人脸集与对应lable 
train_face,train_face_num,test_face,test_face_num = ReadData(TRAINNUM) 
 
# 计算测试集成功率 
def compute_accuracy(v_xs, v_ys): 
 global prediction 
 y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1}) 
 correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) 
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 
 result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1}) 
 return result 
 
# 神经元权重 
def weight_variable(shape): 
 initial = tf.truncated_normal(shape, stddev=0.1) 
 return tf.Variable(initial) 
 
# 神经元偏置 
def bias_variable(shape): 
 initial = tf.constant(0.1, shape=shape) 
 return tf.Variable(initial) 
 
# 卷积 
def conv2d(x, W): 
 # stride [1, x_movement, y_movement, 1] 
 # Must have strides[0] = strides[3] = 1 
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
# 最大池化,x,y步进值均为2 
def max_pool_2x2(x): 
 # stride [1, x_movement, y_movement, 1] 
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') 
 
 
# define placeholder for inputs to network 
xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92 
ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出 
keep_prob = tf.placeholder(tf.float32) 
x_image = tf.reshape(xs, [-1, 112, 92, 1]) 
# print(x_image.shape) # [n_samples, 112,92,1] 
 
# 第一层卷积层 
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 
b_conv1 = bias_variable([32]) 
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32 
h_pool1 = max_pool_2x2(h_conv1)       # output size 56x46x64 
 
 
# 第二层卷积层 
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 
b_conv2 = bias_variable([64]) 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64 
h_pool2 = max_pool_2x2(h_conv2)       # output size 28x23x64 
 
 
# 第一层神经网络全连接层 
W_fc1 = weight_variable([28*23*64, 1024]) 
b_fc1 = bias_variable([1024]) 
# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64] 
h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 
 
# 第二层神经网络全连接层 
W_fc2 = weight_variable([1024, PEOPLENUM]) 
b_fc2 = bias_variable([PEOPLENUM]) 
prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) 
 
 
# 交叉熵损失函数 
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = tf.matmul(h_fc1_drop, W_fc2)+b_fc2, labels=ys)) 
regularizers = tf.nn.l2_loss(W_fc1) + tf.nn.l2_loss(b_fc1) +tf.nn.l2_loss(W_fc2) + tf.nn.l2_loss(b_fc2) 
# 将正则项加入损失函数 
cost += 5e-4 * regularizers 
# 优化器优化误差值 
train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) 
 
sess = tf.Session() 
init = tf.global_variables_initializer() 
saver = tf.train.Saver() 
sess.run(init) 
 
# 训练1000次,每50次输出测试集测试结果 
for i in range(1000): 
 sess.run(train_step, feed_dict={xs: train_face, ys: train_face_num, keep_prob: 0.5}) 
 if i % 50 == 0: 
  print(sess.run(prediction[0],feed_dict= {xs: test_face,ys: test_face_num,keep_prob: 1})) 
  print(compute_accuracy(test_face,test_face_num)) 
# 保存训练数据 
save_path = saver.save(sess,'my_data/save_net.ckpt')

5.用神经卷积网络测试数据

# -*- coding: utf-8 -*- 
# 两层神经卷积网络加两层全连接神经网络 
 
from numpy import * 
import cv2 
import tensorflow as tf 
 
# 神经网络最终输出个数 
PEOPLENUM = 42 
 
# 2维=>1维 
def img2vector1(img): 
 row,col = img.shape 
 vector1 = zeros((1,row*col),float32) 
 vector1 = reshape(img,(1,row*col)) 
 return vector1 
 
# 神经元权重 
def weight_variable(shape): 
 initial = tf.truncated_normal(shape, stddev=0.1) 
 return tf.Variable(initial) 
 
# 神经元偏置 
def bias_variable(shape): 
 initial = tf.constant(0.1, shape=shape) 
 return tf.Variable(initial) 
 
# 卷积 
def conv2d(x, W): 
 # stride [1, x_movement, y_movement, 1] 
 # Must have strides[0] = strides[3] = 1 
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
# 最大池化,x,y步进值均为2 
def max_pool_2x2(x): 
 # stride [1, x_movement, y_movement, 1] 
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') 
 
# define placeholder for inputs to network 
xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92 
ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出 
keep_prob = tf.placeholder(tf.float32) 
x_image = tf.reshape(xs, [-1, 112, 92, 1]) 
# print(x_image.shape) # [n_samples, 112,92,1] 
 
# 第一层卷积层 
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 
b_conv1 = bias_variable([32]) 
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32 
h_pool1 = max_pool_2x2(h_conv1)       # output size 56x46x64 
 
 
# 第二层卷积层 
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 
b_conv2 = bias_variable([64]) 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64 
h_pool2 = max_pool_2x2(h_conv2)       # output size 28x23x64 
 
 
# 第一层神经网络全连接层 
W_fc1 = weight_variable([28*23*64, 1024]) 
b_fc1 = bias_variable([1024]) 
# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64] 
h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 
 
# 第二层神经网络全连接层 
W_fc2 = weight_variable([1024, PEOPLENUM]) 
b_fc2 = bias_variable([PEOPLENUM]) 
prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) 
 
sess = tf.Session() 
init = tf.global_variables_initializer() 
 
# 下载训练数据 
saver = tf.train.Saver() 
saver.restore(sess,'my_data/save_net.ckpt') 
 
# 返回签到人名 
def find_people(people_num): 
 if people_num == 41: 
  return '任童霖' 
 elif people_num == 42: 
  return 'LZT' 
 else: 
  return 'another people' 
 
def test(path): 
 # 获取处理后人脸 
 img = cv2.imread(path,0)/255 
 test_face = img2vector1(img) 
 print('true_test') 
 
 # 计算输出比重最大的人及其所占比重 
 prediction1 = sess.run(prediction,feed_dict={xs:test_face,keep_prob:1}) 
 prediction1 = prediction1[0].tolist() 
 people_num = prediction1.index(max(prediction1))+1 
 result = max(prediction1)/sum(prediction1) 
 print(result,find_people(people_num)) 
 
 # 神经网络输出最大比重大于0.5则匹配成功 
 if result > 0.50: 
  # 保存签到数据 
  qiandaobiao = load('save.npy') 
  qiandaobiao[people_num-1] = 1 
  save('save.npy',qiandaobiao) 
 
  # 返回 人名+签到成功 
  print(find_people(people_num) + '已签到') 
  result = find_people(people_num) + ' 签到成功' 
 else: 
  result = '签到失败' 
 return result

神经卷积网络入门简介

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python日志模块logging简介
Apr 13 Python
全面了解Python环境配置及项目建立
Jun 30 Python
Python 包含汉字的文件读写之每行末尾加上特定字符
Dec 12 Python
详解Python import方法引入模块的实例
Aug 02 Python
Python获取当前页面内所有链接的四种方法对比分析
Aug 19 Python
python实现聚类算法原理
Feb 12 Python
Python匿名函数及应用示例
Apr 09 Python
基于树莓派的语音对话机器人
Jun 17 Python
python3使用腾讯企业邮箱发送邮件的实例
Jun 28 Python
Python入门Anaconda和Pycharm的安装和配置详解
Jul 16 Python
Django用户认证系统 Web请求中的认证解析
Aug 02 Python
Win10用vscode打开anaconda环境中的python出错问题的解决
May 25 Python
在PyCharm环境中使用Jupyter Notebook的两种方法总结
May 24 #Python
Tensorflow实现卷积神经网络的详细代码
May 24 #Python
Tensorflow实现AlexNet卷积神经网络及运算时间评测
May 24 #Python
Tensorflow卷积神经网络实例进阶
May 24 #Python
Tensorflow卷积神经网络实例
May 24 #Python
使用pandas的DataFrame的plot方法绘制图像的实例
May 24 #Python
TensorFlow实现卷积神经网络
May 24 #Python
You might like
火影忍者:这才是千手柱间和扉间的真正死因,角都就比较搞笑了!
2020/03/10 日漫
咖啡知识 咖啡养豆要养多久 排气又是什么
2021/03/06 新手入门
php json_encode()函数返回json数据实例代码
2014/10/10 PHP
PHP实现的下载远程图片自定义函数分享
2015/01/28 PHP
php获取当前月与上个月月初及月末时间戳的方法
2016/12/05 PHP
Thinkphp3.2简单解决多文件上传只上传一张的问题
2017/09/26 PHP
Yii2框架加载css和js文件的方法分析
2019/05/25 PHP
ThinkPHP5框架中使用JWT的方法示例
2020/06/03 PHP
网页常用特效代码整理
2006/06/23 Javascript
IE6下javasc#ipt:void(0) 无效的解决方法
2013/12/23 Javascript
Jquery EasyUI中弹出确认对话框以及加载效果示例代码
2014/02/13 Javascript
jQuery链使用指南
2015/01/20 Javascript
php+ajax+jquery实现点击加载更多内容
2015/05/03 Javascript
利用jQuery实现WordPress中@的ID悬浮显示评论内容
2015/12/11 Javascript
jquery实现倒计时功能
2015/12/28 Javascript
CascadeView级联组件实现思路详解(分离思想和单链表)
2016/04/12 Javascript
jquery 动态增加删除行的简单实例(推荐)
2016/10/12 Javascript
JavaScript、C# URL编码、解码总结
2017/01/21 Javascript
谈谈React中的Render Props模式
2018/12/06 Javascript
node.js实现上传文件功能
2019/07/15 Javascript
vue+koa2搭建mock数据环境的详细教程
2020/05/18 Javascript
Python3 加密(hashlib和hmac)模块的实现
2017/11/23 Python
Python实现的当前时间多加一天、一小时、一分钟操作示例
2018/05/21 Python
Pycharm 实现下一个文件引用另外一个文件的方法
2019/01/17 Python
Python使用Turtle库绘制一棵西兰花
2019/11/23 Python
python正则过滤字母、中文、数字及特殊字符方法详解
2020/02/11 Python
深入浅出CSS3 background-clip,background-origin和border-image教程
2011/01/27 HTML / CSS
什么是规则表达式
2012/05/03 面试题
写一个方法,输入一个文件名和一个字符串,统计这个字符串在这个文件中出现的次数
2016/04/13 面试题
DIY蛋糕店的创业计划书范文
2013/12/26 职场文书
函授教育个人学习的自我评价
2013/12/31 职场文书
五一活动标语
2014/06/30 职场文书
创先争优个人总结
2015/03/04 职场文书
Python Django框架介绍之模板标签及模板的继承
2021/05/27 Python
《吸血鬼:避世 血猎》官宣4.27发售 系列首款大逃杀
2022/04/03 其他游戏
浅谈Redis的事件驱动模型
2022/05/30 Redis