基于python神经卷积网络的人脸识别


Posted in Python onMay 24, 2018

本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下

1.人脸识别整体设计方案

基于python神经卷积网络的人脸识别

客_服交互流程图:

基于python神经卷积网络的人脸识别

2.服务端代码展示

sk = socket.socket() 
# s.bind(address) 将套接字绑定到地址。在AF_INET下,以元组(host,port)的形式表示地址。 
sk.bind(("172.29.25.11",8007)) 
# 开始监听传入连接。 
sk.listen(True) 
 
while True: 
 for i in range(100): 
  # 接受连接并返回(conn,address),conn是新的套接字对象,可以用来接收和发送数据。address是连接客户端的地址。 
  conn,address = sk.accept() 
 
  # 建立图片存储路径 
  path = str(i+1) + '.jpg' 
 
  # 接收图片大小(字节数) 
  size = conn.recv(1024) 
  size_str = str(size,encoding="utf-8") 
  size_str = size_str[2 :] 
  file_size = int(size_str) 
 
  # 响应接收完成 
  conn.sendall(bytes('finish', encoding="utf-8")) 
 
  # 已经接收数据大小 has_size 
  has_size = 0 
  # 创建图片并写入数据 
  f = open(path,"wb") 
  while True: 
   # 获取 
   if file_size == has_size: 
    break 
   date = conn.recv(1024) 
   f.write(date) 
   has_size += len(date) 
  f.close() 
 
  # 图片缩放 
  resize(path) 
  # cut_img(path):图片裁剪成功返回True;失败返回False 
  if cut_img(path): 
   yuchuli() 
   result = test('test.jpg') 
   conn.sendall(bytes(result,encoding="utf-8")) 
  else: 
   print('falue') 
   conn.sendall(bytes('人眼检测失败,请保持图片眼睛清晰',encoding="utf-8")) 
  conn.close()

3.图片预处理

1)图片缩放

# 根据图片大小等比例缩放图片 
def resize(path): 
 image=cv2.imread(path,0) 
 row,col = image.shape 
 if row >= 2500: 
  x,y = int(row/5),int(col/5) 
 elif row >= 2000: 
  x,y = int(row/4),int(col/4) 
 elif row >= 1500: 
  x,y = int(row/3),int(col/3) 
 elif row >= 1000: 
  x,y = int(row/2),int(col/2) 
 else: 
  x,y = row,col 
 # 缩放函数 
 res=cv2.resize(image,(y,x),interpolation=cv2.INTER_CUBIC) 
 cv2.imwrite(path,res)

2)直方图均衡化和中值滤波

# 直方图均衡化 
eq = cv2.equalizeHist(img) 
# 中值滤波 
lbimg=cv2.medianBlur(eq,3)

3)人眼检测

# -*- coding: utf-8 -*- 
# 检测人眼,返回眼睛数据 
 
import numpy as np 
import cv2 
 
def eye_test(path): 
 # 待检测的人脸路径 
 imagepath = path 
 
 # 获取训练好的人脸参数 
 eyeglasses_cascade = cv2.CascadeClassifier('haarcascade_eye_tree_eyeglasses.xml') 
 
 # 读取图片 
 img = cv2.imread(imagepath) 
 # 转为灰度图像 
 gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 
 
 # 检测并获取人眼数据 
 eyeglasses = eyeglasses_cascade.detectMultiScale(gray) 
 # 人眼数为2时返回左右眼位置数据 
 if len(eyeglasses) == 2: 
  num = 0 
  for (e_gx,e_gy,e_gw,e_gh) in eyeglasses: 
   cv2.rectangle(img,(e_gx,e_gy),(e_gx+int(e_gw/2),e_gy+int(e_gh/2)),(0,0,255),2) 
   if num == 0: 
    x1,y1 = e_gx+int(e_gw/2),e_gy+int(e_gh/2) 
   else: 
    x2,y2 = e_gx+int(e_gw/2),e_gy+int(e_gh/2) 
   num += 1 
  print('eye_test') 
  return x1,y1,x2,y2 
 else: 
  return False

4)人眼对齐并裁剪

# -*- coding: utf-8 -*- 
# 人眼对齐并裁剪 
 
# 参数含义: 
# CropFace(image, eye_left, eye_right, offset_pct, dest_sz) 
# eye_left is the position of the left eye 
# eye_right is the position of the right eye 
# 比例的含义为:要保留的图像靠近眼镜的百分比, 
# offset_pct is the percent of the image you want to keep next to the eyes (horizontal, vertical direction) 
# 最后保留的图像的大小。 
# dest_sz is the size of the output image 
# 
import sys,math 
from PIL import Image 
from eye_test import eye_test 
 
 # 计算两个坐标的距离 
def Distance(p1,p2): 
 dx = p2[0]- p1[0] 
 dy = p2[1]- p1[1] 
 return math.sqrt(dx*dx+dy*dy) 
 
 # 根据参数,求仿射变换矩阵和变换后的图像。 
def ScaleRotateTranslate(image, angle, center =None, new_center =None, scale =None, resample=Image.BICUBIC): 
 if (scale is None)and (center is None): 
  return image.rotate(angle=angle, resample=resample) 
 nx,ny = x,y = center 
 sx=sy=1.0 
 if new_center: 
  (nx,ny) = new_center 
 if scale: 
  (sx,sy) = (scale, scale) 
 cosine = math.cos(angle) 
 sine = math.sin(angle) 
 a = cosine/sx 
 b = sine/sx 
 c = x-nx*a-ny*b 
 d =-sine/sy 
 e = cosine/sy 
 f = y-nx*d-ny*e 
 return image.transform(image.size, Image.AFFINE, (a,b,c,d,e,f), resample=resample) 
 
 # 根据所给的人脸图像,眼睛坐标位置,偏移比例,输出的大小,来进行裁剪。 
def CropFace(image, eye_left=(0,0), eye_right=(0,0), offset_pct=(0.2,0.2), dest_sz = (70,70)): 
 # calculate offsets in original image 计算在原始图像上的偏移。 
 offset_h = math.floor(float(offset_pct[0])*dest_sz[0]) 
 offset_v = math.floor(float(offset_pct[1])*dest_sz[1]) 
 # get the direction 计算眼睛的方向。 
 eye_direction = (eye_right[0]- eye_left[0], eye_right[1]- eye_left[1]) 
 # calc rotation angle in radians 计算旋转的方向弧度。 
 rotation =-math.atan2(float(eye_direction[1]),float(eye_direction[0])) 
 # distance between them # 计算两眼之间的距离。 
 dist = Distance(eye_left, eye_right) 
 # calculate the reference eye-width 计算最后输出的图像两只眼睛之间的距离。 
 reference = dest_sz[0]-2.0*offset_h 
 # scale factor # 计算尺度因子。 
 scale =float(dist)/float(reference) 
 # rotate original around the left eye # 原图像绕着左眼的坐标旋转。 
 image = ScaleRotateTranslate(image, center=eye_left, angle=rotation) 
 # crop the rotated image # 剪切 
 crop_xy = (eye_left[0]- scale*offset_h, eye_left[1]- scale*offset_v) # 起点 
 crop_size = (dest_sz[0]*scale, dest_sz[1]*scale) # 大小 
 image = image.crop((int(crop_xy[0]),int(crop_xy[1]),int(crop_xy[0]+crop_size[0]),int(crop_xy[1]+crop_size[1]))) 
 # resize it 重置大小 
 image = image.resize(dest_sz, Image.ANTIALIAS) 
 return image 
 
def cut_img(path): 
 image = Image.open(path) 
 
 # 人眼识别成功返回True;否则,返回False 
 if eye_test(path): 
  print('cut_img') 
  # 获取人眼数据 
  leftx,lefty,rightx,righty = eye_test(path) 
 
  # 确定左眼和右眼位置 
  if leftx > rightx: 
   temp_x,temp_y = leftx,lefty 
   leftx,lefty = rightx,righty 
   rightx,righty = temp_x,temp_y 
 
  # 进行人眼对齐并保存截图 
  CropFace(image, eye_left=(leftx,lefty), eye_right=(rightx,righty), offset_pct=(0.30,0.30), dest_sz=(92,112)).save('test.jpg') 
  return True 
 else: 
  print('falue') 
  return False

4.用神经卷积网络训练数据

# -*- coding: utf-8 -*- 
 
from numpy import * 
import cv2 
import tensorflow as tf 
 
# 图片大小 
TYPE = 112*92 
# 训练人数 
PEOPLENUM = 42 
# 每人训练图片数 
TRAINNUM = 15 #( train_face_num ) 
# 单人训练人数加测试人数 
EACH = 21 #( test_face_num + train_face_num ) 
 
# 2维=>1维 
def img2vector1(filename): 
 img = cv2.imread(filename,0) 
 row,col = img.shape 
 vector1 = zeros((1,row*col)) 
 vector1 = reshape(img,(1,row*col)) 
 return vector1 
 
# 获取人脸数据 
def ReadData(k): 
 path = 'face_flip/' 
 train_face = zeros((PEOPLENUM*k,TYPE),float32) 
 train_face_num = zeros((PEOPLENUM*k,PEOPLENUM)) 
 test_face = zeros((PEOPLENUM*(EACH-k),TYPE),float32) 
 test_face_num = zeros((PEOPLENUM*(EACH-k),PEOPLENUM)) 
 
 # 建立42个人的训练人脸集和测试人脸集 
 for i in range(PEOPLENUM): 
  # 单前获取人 
  people_num = i + 1 
  for j in range(k): 
   #获取图片路径 
   filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' 
   #2维=>1维 
   img = img2vector1(filename) 
 
   #train_face:每一行为一幅图的数据;train_face_num:储存每幅图片属于哪个人 
   train_face[i*k+j,:] = img/255 
   train_face_num[i*k+j,people_num-1] = 1 
 
  for j in range(k,EACH): 
   #获取图片路径 
   filename = path + 's' + str(people_num) + '/' + str(j+1) + '.jpg' 
 
   #2维=>1维 
   img = img2vector1(filename) 
 
   # test_face:每一行为一幅图的数据;test_face_num:储存每幅图片属于哪个人 
   test_face[i*(EACH-k)+(j-k),:] = img/255 
   test_face_num[i*(EACH-k)+(j-k),people_num-1] = 1 
 
 return train_face,train_face_num,test_face,test_face_num 
 
# 获取训练和测试人脸集与对应lable 
train_face,train_face_num,test_face,test_face_num = ReadData(TRAINNUM) 
 
# 计算测试集成功率 
def compute_accuracy(v_xs, v_ys): 
 global prediction 
 y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1}) 
 correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1)) 
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) 
 result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1}) 
 return result 
 
# 神经元权重 
def weight_variable(shape): 
 initial = tf.truncated_normal(shape, stddev=0.1) 
 return tf.Variable(initial) 
 
# 神经元偏置 
def bias_variable(shape): 
 initial = tf.constant(0.1, shape=shape) 
 return tf.Variable(initial) 
 
# 卷积 
def conv2d(x, W): 
 # stride [1, x_movement, y_movement, 1] 
 # Must have strides[0] = strides[3] = 1 
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
# 最大池化,x,y步进值均为2 
def max_pool_2x2(x): 
 # stride [1, x_movement, y_movement, 1] 
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') 
 
 
# define placeholder for inputs to network 
xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92 
ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出 
keep_prob = tf.placeholder(tf.float32) 
x_image = tf.reshape(xs, [-1, 112, 92, 1]) 
# print(x_image.shape) # [n_samples, 112,92,1] 
 
# 第一层卷积层 
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 
b_conv1 = bias_variable([32]) 
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32 
h_pool1 = max_pool_2x2(h_conv1)       # output size 56x46x64 
 
 
# 第二层卷积层 
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 
b_conv2 = bias_variable([64]) 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64 
h_pool2 = max_pool_2x2(h_conv2)       # output size 28x23x64 
 
 
# 第一层神经网络全连接层 
W_fc1 = weight_variable([28*23*64, 1024]) 
b_fc1 = bias_variable([1024]) 
# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64] 
h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 
 
# 第二层神经网络全连接层 
W_fc2 = weight_variable([1024, PEOPLENUM]) 
b_fc2 = bias_variable([PEOPLENUM]) 
prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) 
 
 
# 交叉熵损失函数 
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits = tf.matmul(h_fc1_drop, W_fc2)+b_fc2, labels=ys)) 
regularizers = tf.nn.l2_loss(W_fc1) + tf.nn.l2_loss(b_fc1) +tf.nn.l2_loss(W_fc2) + tf.nn.l2_loss(b_fc2) 
# 将正则项加入损失函数 
cost += 5e-4 * regularizers 
# 优化器优化误差值 
train_step = tf.train.AdamOptimizer(1e-4).minimize(cost) 
 
sess = tf.Session() 
init = tf.global_variables_initializer() 
saver = tf.train.Saver() 
sess.run(init) 
 
# 训练1000次,每50次输出测试集测试结果 
for i in range(1000): 
 sess.run(train_step, feed_dict={xs: train_face, ys: train_face_num, keep_prob: 0.5}) 
 if i % 50 == 0: 
  print(sess.run(prediction[0],feed_dict= {xs: test_face,ys: test_face_num,keep_prob: 1})) 
  print(compute_accuracy(test_face,test_face_num)) 
# 保存训练数据 
save_path = saver.save(sess,'my_data/save_net.ckpt')

5.用神经卷积网络测试数据

# -*- coding: utf-8 -*- 
# 两层神经卷积网络加两层全连接神经网络 
 
from numpy import * 
import cv2 
import tensorflow as tf 
 
# 神经网络最终输出个数 
PEOPLENUM = 42 
 
# 2维=>1维 
def img2vector1(img): 
 row,col = img.shape 
 vector1 = zeros((1,row*col),float32) 
 vector1 = reshape(img,(1,row*col)) 
 return vector1 
 
# 神经元权重 
def weight_variable(shape): 
 initial = tf.truncated_normal(shape, stddev=0.1) 
 return tf.Variable(initial) 
 
# 神经元偏置 
def bias_variable(shape): 
 initial = tf.constant(0.1, shape=shape) 
 return tf.Variable(initial) 
 
# 卷积 
def conv2d(x, W): 
 # stride [1, x_movement, y_movement, 1] 
 # Must have strides[0] = strides[3] = 1 
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') 
 
# 最大池化,x,y步进值均为2 
def max_pool_2x2(x): 
 # stride [1, x_movement, y_movement, 1] 
 return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME') 
 
# define placeholder for inputs to network 
xs = tf.placeholder(tf.float32, [None, 10304])/255. # 112*92 
ys = tf.placeholder(tf.float32, [None, PEOPLENUM]) # 42个输出 
keep_prob = tf.placeholder(tf.float32) 
x_image = tf.reshape(xs, [-1, 112, 92, 1]) 
# print(x_image.shape) # [n_samples, 112,92,1] 
 
# 第一层卷积层 
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32 
b_conv1 = bias_variable([32]) 
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 112x92x32 
h_pool1 = max_pool_2x2(h_conv1)       # output size 56x46x64 
 
 
# 第二层卷积层 
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64 
b_conv2 = bias_variable([64]) 
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 56x46x64 
h_pool2 = max_pool_2x2(h_conv2)       # output size 28x23x64 
 
 
# 第一层神经网络全连接层 
W_fc1 = weight_variable([28*23*64, 1024]) 
b_fc1 = bias_variable([1024]) 
# [n_samples, 28, 23, 64] ->> [n_samples, 28*23*64] 
h_pool2_flat = tf.reshape(h_pool2, [-1, 28*23*64]) 
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) 
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) 
 
# 第二层神经网络全连接层 
W_fc2 = weight_variable([1024, PEOPLENUM]) 
b_fc2 = bias_variable([PEOPLENUM]) 
prediction = tf.nn.softmax((tf.matmul(h_fc1_drop, W_fc2) + b_fc2)) 
 
sess = tf.Session() 
init = tf.global_variables_initializer() 
 
# 下载训练数据 
saver = tf.train.Saver() 
saver.restore(sess,'my_data/save_net.ckpt') 
 
# 返回签到人名 
def find_people(people_num): 
 if people_num == 41: 
  return '任童霖' 
 elif people_num == 42: 
  return 'LZT' 
 else: 
  return 'another people' 
 
def test(path): 
 # 获取处理后人脸 
 img = cv2.imread(path,0)/255 
 test_face = img2vector1(img) 
 print('true_test') 
 
 # 计算输出比重最大的人及其所占比重 
 prediction1 = sess.run(prediction,feed_dict={xs:test_face,keep_prob:1}) 
 prediction1 = prediction1[0].tolist() 
 people_num = prediction1.index(max(prediction1))+1 
 result = max(prediction1)/sum(prediction1) 
 print(result,find_people(people_num)) 
 
 # 神经网络输出最大比重大于0.5则匹配成功 
 if result > 0.50: 
  # 保存签到数据 
  qiandaobiao = load('save.npy') 
  qiandaobiao[people_num-1] = 1 
  save('save.npy',qiandaobiao) 
 
  # 返回 人名+签到成功 
  print(find_people(people_num) + '已签到') 
  result = find_people(people_num) + ' 签到成功' 
 else: 
  result = '签到失败' 
 return result

神经卷积网络入门简介

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 文件和路径操作函数小结
Nov 23 Python
Python的Bottle框架中获取制定cookie的教程
Apr 24 Python
Python的Django REST框架中的序列化及请求和返回
Apr 11 Python
Python 两个列表的差集、并集和交集实现代码
Sep 21 Python
python用装饰器自动注册Tornado路由详解
Feb 14 Python
Python数据拟合与广义线性回归算法学习
Dec 22 Python
python基于http下载视频或音频
Jun 20 Python
pyqt5的QWebEngineView 使用模板的方法
Aug 18 Python
python使用if语句实现一个猜拳游戏详解
Aug 27 Python
简单介绍django提供的加密算法
Dec 18 Python
Python 实现平台类游戏添加跳跃功能
Mar 27 Python
python selenium xpath定位操作
Sep 01 Python
在PyCharm环境中使用Jupyter Notebook的两种方法总结
May 24 #Python
Tensorflow实现卷积神经网络的详细代码
May 24 #Python
Tensorflow实现AlexNet卷积神经网络及运算时间评测
May 24 #Python
Tensorflow卷积神经网络实例进阶
May 24 #Python
Tensorflow卷积神经网络实例
May 24 #Python
使用pandas的DataFrame的plot方法绘制图像的实例
May 24 #Python
TensorFlow实现卷积神经网络
May 24 #Python
You might like
PHP截取汉字乱码问题解决方法mb_substr函数的应用
2008/03/30 PHP
PHP 类型转换函数intval
2009/06/20 PHP
一道求$b相对于$a的相对路径的php代码
2010/08/08 PHP
Linux fgetcsv取得的数组元素为空字符串的解决方法
2011/11/25 PHP
php使用百度翻译api示例分享
2014/01/31 PHP
PHP简单读取PDF页数的实现方法
2016/07/21 PHP
PHP设计模式之组合模式定义与应用示例
2020/02/01 PHP
JQuery事件e参数的方法preventDefault()取消默认行为
2013/09/26 Javascript
JS获取节点的兄弟,父级,子级元素的方法
2014/01/09 Javascript
javascript判断移动端访问设备并解析对应CSS的方法
2015/02/05 Javascript
jquery无限级联下拉菜单简单实例演示
2015/11/23 Javascript
JavaScript 链式结构序列化详解
2016/09/30 Javascript
JS实现的简易拖放效果示例
2016/12/29 Javascript
深入理解Node.js中通用基础设计模式
2017/09/19 Javascript
详解vue-cli 接口代理配置
2017/12/13 Javascript
mpvue 如何使用腾讯视频插件的方法
2018/07/16 Javascript
web页面和微信小程序页面实现瀑布流效果
2018/09/26 Javascript
vue图片加载失败时用默认图片替换的方法
2019/08/29 Javascript
vue中destroyed方法的使用说明
2020/07/21 Javascript
jQuery实现开关灯效果
2020/08/02 jQuery
解决vue addRoutes不生效问题
2020/08/04 Javascript
使用Python的Flask框架表单插件Flask-WTF实现Web登录验证
2016/07/12 Python
详解python上传文件和字符到PHP服务器
2017/11/24 Python
python3+PyQt5实现拖放功能
2018/04/24 Python
Python封装原理与实现方法详解
2018/08/28 Python
python2 与 pyhton3的输入语句写法小结
2018/09/10 Python
20行python代码的入门级小游戏的详解
2019/05/05 Python
使用python进行波形及频谱绘制的方法
2019/06/17 Python
python3+PyQt5 实现Rich文本的行编辑方法
2019/06/17 Python
Python pandas实现excel工作表合并功能详解
2019/08/29 Python
详解KMP算法以及python如何实现
2020/09/18 Python
Django视图类型总结
2021/02/17 Python
新闻记者实习自我鉴定
2013/09/19 职场文书
导游词欢迎词
2015/02/02 职场文书
小学四年级班主任工作经验交流材料
2015/11/02 职场文书
HAM-2000摩机图
2021/04/22 无线电