Tensorflow卷积神经网络实例


Posted in Python onMay 24, 2018

CNN最大的特点在于卷积的权值共享结构,可以大幅减少神经网络的参数量,防止过拟合的同时又降低了神经网络模型的复杂度。在CNN中,第一个卷积层会直接接受图像像素级的输入,每一个卷积操作只处理一小块图像,进行卷积变化后再传到后面的网络,每一层卷积都会提取数据中最有效的特征。这种方法可以提取到图像中最基础的特征,比如不同方向的边或者拐角,而后再进行组合和抽象形成更高阶的特征。

一般的卷积神经网络由多个卷积层构成,每个卷积层中通常会进行如下几个操作:

  • 图像通过多个不同的卷积核的滤波,并加偏置(bias),特取出局部特征,每个卷积核会映射出一个新的2D图像。
  • 将前面卷积核的滤波输出结果,进行非线性的激活函数处理。目前最常见的是使用ReLU函数,而以前Sigmoid函数用得比较多。
  • 对激活函数的结果再进行池化操作(即降采样,比如将2*2的图片将为1*1的图片),目前一般是使用最大池化,保留最显著的特征,并提升模型的畸变容忍能力。

总结一下,CNN的要点是局部连接(local Connection)、权值共享(Weight Sharing)和池化层(Pooling)中的降采样(Down-Sampling)。

本文将使用Tensorflow实现一个简单的卷积神经网络,使用的数据集是MNIST,网络结构:两个卷积层加一个全连接层。

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf

# 载入MNIST数据集,并创建默认的Interactive Session。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

# 创建权重和偏置,以便重复使用。我们需要给权重制造一些随机的噪声来打破完全对称,比如截断的正态分布噪声,标准差设为0.1
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

# 创建卷积层、池化层,以便重复使用
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 定义输入的placeholder
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定义第一个卷积层
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1)

# 定义第二个卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool(h_conv2)

# 定义全连接层。由于第二个卷积层输出的tensor是7*7*64,我们使用tf.reshape函数对其进行变形
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 为了减轻过拟合,下面使用一个Dropout层。通过一个placeholder传入keep_prob比率来控制的。在训练时,我们随机丢弃一部分节点
# 的数据来减轻过拟合,预测时则保留全部数据来追求最好的预测性能。
keep_prob = tf.placeholder(dtype=tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 最后我们将Dropout层的输出连接一个Softmax层,得到最后的概率输出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定义损失函数为cross entropy和优化器
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 定义评测准确率的操作
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 下面开始训练
tf.global_variables_initializer().run()
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i % 100 == 0:
  train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
  print("Step %d, training accuracy %g" % (i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

# 载入MNIST数据集,并创建默认的Interactive Session。
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()

# 创建权重和偏置,以便重复使用。我们需要给权重制造一些随机的噪声来打破完全对称,比如截断的正态分布噪声,标准差设为0.1
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

# 创建卷积层、池化层,以便重复使用
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 定义输入的placeholder
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x, [-1, 28, 28, 1])

# 定义第一个卷积层
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool(h_conv1)

# 定义第二个卷积层
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool(h_conv2)

# 定义全连接层。由于第二个卷积层输出的tensor是7*7*64,我们使用tf.reshape函数对其进行变形
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# 为了减轻过拟合,下面使用一个Dropout层。通过一个placeholder传入keep_prob比率来控制的。在训练时,我们随机丢弃一部分节点
# 的数据来减轻过拟合,预测时则保留全部数据来追求最好的预测性能。
keep_prob = tf.placeholder(dtype=tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# 最后我们将Dropout层的输出连接一个Softmax层,得到最后的概率输出
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 定义损失函数为cross entropy和优化器
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 定义评测准确率的操作
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# 下面开始训练
tf.global_variables_initializer().run()
for i in range(20000):
 batch = mnist.train.next_batch(50)
 if i % 100 == 0:
  train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
  print("Step %d, training accuracy %g" % (i, train_accuracy))
 train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

print("test accuracy %g" % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))

运行结果:

Tensorflow卷积神经网络实例

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python 元类使用说明
Dec 18 Python
使用70行Python代码实现一个递归下降解析器的教程
Apr 17 Python
使用Python编写vim插件的简单示例
Apr 17 Python
qpython3 读取安卓lastpass Cookies
Jun 19 Python
Python实现将SQLite中的数据直接输出为CVS的方法示例
Jul 13 Python
利用Python2下载单张图片与爬取网页图片实例代码
Dec 25 Python
python爬虫URL重试机制的实现方法(python2.7以及python3.5)
Dec 18 Python
彻底理解Python中的yield关键字
Apr 01 Python
python微信聊天机器人改进版(定时或触发抓取天气预报、励志语录等,向好友推送)
Apr 25 Python
python常用库之NumPy和sklearn入门
Jul 11 Python
Django查询优化及ajax编码格式原理解析
Mar 25 Python
pandas数据拼接的实现示例
Apr 16 Python
使用pandas的DataFrame的plot方法绘制图像的实例
May 24 #Python
TensorFlow实现卷积神经网络
May 24 #Python
tensorflow实现简单的卷积神经网络
May 24 #Python
tensorflow实现简单的卷积网络
May 24 #Python
解决pandas 作图无法显示中文的问题
May 24 #Python
TensorFlow实现简单卷积神经网络
May 24 #Python
解决matplotlib库show()方法不显示图片的问题
May 24 #Python
You might like
php中设置index.php文件为只读的方法
2013/02/06 PHP
PHP跳转页面的几种实现方法详解
2013/06/08 PHP
php curl 获取https请求的2种方法
2015/04/27 PHP
初识ThinkPHP控制器
2016/04/07 PHP
Laravel 集成微信用户登录和绑定的实现
2019/12/27 PHP
TNC vs BOOM BO3 第三场2.13
2021/03/10 DOTA
JavaScript 判断浏览器类型及版本
2009/02/21 Javascript
心扬JS分页函数代码
2010/09/10 Javascript
JavaScript自定义事件介绍
2013/08/29 Javascript
jquery通过visible来判断标签是否显示或隐藏
2014/05/08 Javascript
JavaScript动态添加列的方法
2015/03/25 Javascript
Javascript实现快速排序(Quicksort)的算法详解
2015/09/06 Javascript
jquery实现仿Flash的横向滑动菜单效果代码
2015/09/17 Javascript
AngularJS仿苹果滑屏删除控件
2016/01/18 Javascript
Angularjs中UI Router全攻略
2016/01/29 Javascript
三种带箭头提示框总结实例
2016/06/14 Javascript
WEB前端实现裁剪上传图片功能
2016/10/17 Javascript
Vue的生命周期操作示例
2019/09/17 Javascript
Python检测一个对象是否为字符串类的方法
2015/05/21 Python
python实现随机森林random forest的原理及方法
2017/12/21 Python
Python循环中else,break和continue的用法实例详解
2019/07/11 Python
python 图像的离散傅立叶变换实例
2020/01/02 Python
python GUI库图形界面开发之PyQt5选项卡控件QTabWidget详细使用方法与实例
2020/03/01 Python
浅谈多卡服务器下隐藏部分 GPU 和 TensorFlow 的显存使用设置
2020/06/30 Python
详解Pycharm与anaconda安装配置指南
2020/08/25 Python
pycharm配置QtDesigner的超详细方法
2021/01/25 Python
python实现控制台输出颜色
2021/03/02 Python
柒牌官方商城:中国男装优秀品牌
2017/06/30 全球购物
李维斯牛仔裤荷兰官方网站:Levi’s NL
2020/08/23 全球购物
大学生党校培训心得体会
2014/09/11 职场文书
领导班子四风对照检查材料范文
2014/09/27 职场文书
财务会计实训报告
2014/11/05 职场文书
同学聚会通知短信
2015/04/20 职场文书
机器人总动员观后感
2015/06/09 职场文书
运动会三级跳加油稿
2015/07/21 职场文书
入党后的感想
2015/08/10 职场文书