TensorFLow 不同大小图片的TFrecords存取实例


Posted in Python onJanuary 20, 2020

全部存入一个TFrecords文件,然后读取并显示第一张。

不多写了,直接贴代码。

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf


IMAGE_PATH = 'test/'
tfrecord_file = IMAGE_PATH + 'test.tfrecord'
writer = tf.python_io.TFRecordWriter(tfrecord_file)


def _int64_feature(value):
 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def get_image_binary(filename):
  """ You can read in the image using tensorflow too, but it's a drag
    since you have to create graphs. It's much easier using Pillow and NumPy
  """
  image = Image.open(filename)
  image = np.asarray(image, np.uint8)
  shape = np.array(image.shape, np.int32)
  return shape, image.tobytes() # convert image to raw data bytes in the array.

def write_to_tfrecord(label, shape, binary_image, tfrecord_file):
  """ This example is to write a sample to TFRecord file. If you want to write
  more samples, just use a loop.
  """
  # write label, shape, and image content to the TFRecord file
  example = tf.train.Example(features=tf.train.Features(feature={
        'label': _int64_feature(label),
        'h': _int64_feature(shape[0]),
        'w': _int64_feature(shape[1]),
        'c': _int64_feature(shape[2]),
        'image': _bytes_feature(binary_image)
        }))
  writer.write(example.SerializeToString())


def write_tfrecord(label, image_file, tfrecord_file):
  shape, binary_image = get_image_binary(image_file)
  write_to_tfrecord(label, shape, binary_image, tfrecord_file)
  # print(shape)



def main():
  # assume the image has the label Chihuahua, which corresponds to class number 1
  label = [1,2]
  image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg']

  for i in range(2):
    write_tfrecord(label[i], image_files[i], tfrecord_file)
  writer.close()

  batch_size = 2

  filename_queue = tf.train.string_input_producer([tfrecord_file]) 
  reader = tf.TFRecordReader() 
  _, serialized_example = reader.read(filename_queue) 

  img_features = tf.parse_single_example( 
                    serialized_example, 
                    features={ 
                        'label': tf.FixedLenFeature([], tf.int64), 
                        'h': tf.FixedLenFeature([], tf.int64),
                        'w': tf.FixedLenFeature([], tf.int64),
                        'c': tf.FixedLenFeature([], tf.int64),
                        'image': tf.FixedLenFeature([], tf.string), 
                        }) 

  h = tf.cast(img_features['h'], tf.int32)
  w = tf.cast(img_features['w'], tf.int32)
  c = tf.cast(img_features['c'], tf.int32)

  image = tf.decode_raw(img_features['image'], tf.uint8) 
  image = tf.reshape(image, [h, w, c])

  label = tf.cast(img_features['label'],tf.int32) 
  label = tf.reshape(label, [1])

 # image = tf.image.resize_images(image, (500,500))
  #image, label = tf.train.batch([image, label], batch_size= batch_size) 


  with tf.Session() as sess:
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    image, label=sess.run([image, label])
    coord.request_stop()
    coord.join(threads)

    print(label)

    plt.figure()
    plt.imshow(image)
    plt.show()


if __name__ == '__main__':
  main()

全部存入一个TFrecords文件,然后按照batch_size读取,注意需要将图片变成一样大才能按照batch_size读取。

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf


IMAGE_PATH = 'test/'
tfrecord_file = IMAGE_PATH + 'test.tfrecord'
writer = tf.python_io.TFRecordWriter(tfrecord_file)


def _int64_feature(value):
 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def get_image_binary(filename):
  """ You can read in the image using tensorflow too, but it's a drag
    since you have to create graphs. It's much easier using Pillow and NumPy
  """
  image = Image.open(filename)
  image = np.asarray(image, np.uint8)
  shape = np.array(image.shape, np.int32)
  return shape, image.tobytes() # convert image to raw data bytes in the array.

def write_to_tfrecord(label, shape, binary_image, tfrecord_file):
  """ This example is to write a sample to TFRecord file. If you want to write
  more samples, just use a loop.
  """
  # write label, shape, and image content to the TFRecord file
  example = tf.train.Example(features=tf.train.Features(feature={
        'label': _int64_feature(label),
        'h': _int64_feature(shape[0]),
        'w': _int64_feature(shape[1]),
        'c': _int64_feature(shape[2]),
        'image': _bytes_feature(binary_image)
        }))
  writer.write(example.SerializeToString())


def write_tfrecord(label, image_file, tfrecord_file):
  shape, binary_image = get_image_binary(image_file)
  write_to_tfrecord(label, shape, binary_image, tfrecord_file)
  # print(shape)



def main():
  # assume the image has the label Chihuahua, which corresponds to class number 1
  label = [1,2]
  image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg']

  for i in range(2):
    write_tfrecord(label[i], image_files[i], tfrecord_file)
  writer.close()

  batch_size = 2

  filename_queue = tf.train.string_input_producer([tfrecord_file]) 
  reader = tf.TFRecordReader() 
  _, serialized_example = reader.read(filename_queue) 

  img_features = tf.parse_single_example( 
                    serialized_example, 
                    features={ 
                        'label': tf.FixedLenFeature([], tf.int64), 
                        'h': tf.FixedLenFeature([], tf.int64),
                        'w': tf.FixedLenFeature([], tf.int64),
                        'c': tf.FixedLenFeature([], tf.int64),
                        'image': tf.FixedLenFeature([], tf.string), 
                        }) 

  h = tf.cast(img_features['h'], tf.int32)
  w = tf.cast(img_features['w'], tf.int32)
  c = tf.cast(img_features['c'], tf.int32)

  image = tf.decode_raw(img_features['image'], tf.uint8) 
  image = tf.reshape(image, [h, w, c])

  label = tf.cast(img_features['label'],tf.int32) 
  label = tf.reshape(label, [1])

  image = tf.image.resize_images(image, (224,224))
  image = tf.reshape(image, [224, 224, 3])
  image, label = tf.train.batch([image, label], batch_size= batch_size) 


  with tf.Session() as sess:
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    image, label=sess.run([image, label])
    coord.request_stop()
    coord.join(threads)

    print(image.shape)
    print(label)

    plt.figure()
    plt.imshow(image[0,:,:,0])
    plt.show()

    plt.figure()
    plt.imshow(image[0,:,:,1])
    plt.show()

    image1 = image[0,:,:,:]
    print(image1.shape)
    print(image1.dtype)
    im = Image.fromarray(np.uint8(image1)) #参考numpy和图片的互转:http://blog.csdn.net/zywvvd/article/details/72810360
    im.show()

if __name__ == '__main__':
  main()

输出是

(2, 224, 224, 3)
[[1]
 [2]]

第一张图片的三种显示(略)

封装成函数:

# -*- coding: utf-8 -*-
"""
Created on Fri Sep 8 14:38:15 2017

@author: wayne


"""


'''
本文参考了以下代码,在多个不同大小图片存取方面做了重新开发:
https://github.com/chiphuyen/stanford-tensorflow-tutorials/blob/master/examples/09_tfrecord_example.py
http://blog.csdn.net/hjxu2016/article/details/76165559
https://stackoverflow.com/questions/41921746/tensorflow-varlenfeature-vs-fixedlenfeature
https://github.com/tensorflow/tensorflow/issues/10492

后续:
-存入多个TFrecords文件的例子见
http://blog.csdn.net/xierhacker/article/details/72357651
-如何作shuffle和数据增强
string_input_producer (需要理解tf的数据流,标签队列的工作方式等等)
http://blog.csdn.net/liuchonge/article/details/73649251
'''

from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf


IMAGE_PATH = 'test/'
tfrecord_file = IMAGE_PATH + 'test.tfrecord'
writer = tf.python_io.TFRecordWriter(tfrecord_file)


def _int64_feature(value):
 return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))

def _bytes_feature(value):
 return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))

def get_image_binary(filename):
  """ You can read in the image using tensorflow too, but it's a drag
    since you have to create graphs. It's much easier using Pillow and NumPy
  """
  image = Image.open(filename)
  image = np.asarray(image, np.uint8)
  shape = np.array(image.shape, np.int32)
  return shape, image.tobytes() # convert image to raw data bytes in the array.

def write_to_tfrecord(label, shape, binary_image, tfrecord_file):
  """ This example is to write a sample to TFRecord file. If you want to write
  more samples, just use a loop.
  """
  # write label, shape, and image content to the TFRecord file
  example = tf.train.Example(features=tf.train.Features(feature={
        'label': _int64_feature(label),
        'h': _int64_feature(shape[0]),
        'w': _int64_feature(shape[1]),
        'c': _int64_feature(shape[2]),
        'image': _bytes_feature(binary_image)
        }))
  writer.write(example.SerializeToString())


def write_tfrecord(label, image_file, tfrecord_file):
  shape, binary_image = get_image_binary(image_file)
  write_to_tfrecord(label, shape, binary_image, tfrecord_file)


def read_and_decode(tfrecords_file, batch_size): 
  '''''read and decode tfrecord file, generate (image, label) batches 
  Args: 
    tfrecords_file: the directory of tfrecord file 
    batch_size: number of images in each batch 
  Returns: 
    image: 4D tensor - [batch_size, width, height, channel] 
    label: 1D tensor - [batch_size] 
  ''' 
  # make an input queue from the tfrecord file 

  filename_queue = tf.train.string_input_producer([tfrecord_file]) 
  reader = tf.TFRecordReader() 
  _, serialized_example = reader.read(filename_queue) 

  img_features = tf.parse_single_example( 
                    serialized_example, 
                    features={ 
                        'label': tf.FixedLenFeature([], tf.int64), 
                        'h': tf.FixedLenFeature([], tf.int64),
                        'w': tf.FixedLenFeature([], tf.int64),
                        'c': tf.FixedLenFeature([], tf.int64),
                        'image': tf.FixedLenFeature([], tf.string), 
                        }) 

  h = tf.cast(img_features['h'], tf.int32)
  w = tf.cast(img_features['w'], tf.int32)
  c = tf.cast(img_features['c'], tf.int32)

  image = tf.decode_raw(img_features['image'], tf.uint8) 
  image = tf.reshape(image, [h, w, c])

  label = tf.cast(img_features['label'],tf.int32) 
  label = tf.reshape(label, [1])

  ########################################################## 
  # you can put data augmentation here  
#  distorted_image = tf.random_crop(images, [530, 530, img_channel])
#  distorted_image = tf.image.random_flip_left_right(distorted_image)
#  distorted_image = tf.image.random_brightness(distorted_image, max_delta=63)
#  distorted_image = tf.image.random_contrast(distorted_image, lower=0.2, upper=1.8)
#  distorted_image = tf.image.resize_images(distorted_image, (imagesize,imagesize))
#  float_image = tf.image.per_image_standardization(distorted_image)

  image = tf.image.resize_images(image, (224,224))
  image = tf.reshape(image, [224, 224, 3])
  #image, label = tf.train.batch([image, label], batch_size= batch_size) 

  image_batch, label_batch = tf.train.batch([image, label], 
                        batch_size= batch_size, 
                        num_threads= 64,  
                        capacity = 2000) 
  return image_batch, tf.reshape(label_batch, [batch_size]) 

def read_tfrecord2(tfrecord_file, batch_size):
  train_batch, train_label_batch = read_and_decode(tfrecord_file, batch_size)

  with tf.Session() as sess:
    coord = tf.train.Coordinator()
    threads = tf.train.start_queue_runners(coord=coord)
    train_batch, train_label_batch = sess.run([train_batch, train_label_batch])
    coord.request_stop()
    coord.join(threads)
  return train_batch, train_label_batch


def main():
  # assume the image has the label Chihuahua, which corresponds to class number 1
  label = [1,2]
  image_files = [IMAGE_PATH + 'a.jpg', IMAGE_PATH + 'b.jpg']

  for i in range(2):
    write_tfrecord(label[i], image_files[i], tfrecord_file)
  writer.close()

  batch_size = 2
  # read_tfrecord(tfrecord_file) # 读取一个图
  train_batch, train_label_batch = read_tfrecord2(tfrecord_file, batch_size)

  print(train_batch.shape)
  print(train_label_batch)

  plt.figure()
  plt.imshow(train_batch[0,:,:,0])
  plt.show()

  plt.figure()
  plt.imshow(train_batch[0,:,:,1])
  plt.show()

  train_batch1 = train_batch[0,:,:,:]
  print(train_batch.shape)
  print(train_batch1.dtype)
  im = Image.fromarray(np.uint8(train_batch1)) #参考numpy和图片的互转:http://blog.csdn.net/zywvvd/article/details/72810360
  im.show()

if __name__ == '__main__':
  main()

以上这篇TensorFLow 不同大小图片的TFrecords存取实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Centos Python2 升级到Python3的简单实现
Jun 21 Python
Python实现类的创建与使用方法示例
Jul 25 Python
Python tkinter实现的图片移动碰撞动画效果【附源码下载】
Jan 04 Python
python处理csv中的空值方法
Jun 22 Python
说说如何遍历Python列表的方法示例
Feb 11 Python
浅谈python常用程序算法
Mar 22 Python
Python 操作mysql数据库查询之fetchone(), fetchmany(), fetchall()用法示例
Oct 17 Python
如何解决tensorflow恢复模型的特定值时出错
Feb 06 Python
详解django使用include无法跳转的解决方法
Mar 19 Python
Pyqt5 关于流式布局和滚动条的综合使用示例代码
Mar 24 Python
详解BeautifulSoup获取特定标签下内容的方法
Dec 07 Python
Python数组变形的几种实现方法
May 30 Python
python各层级目录下import方法代码实例
Jan 20 #Python
Python 识别12306图片验证码物品的实现示例
Jan 20 #Python
如何基于python实现归一化处理
Jan 20 #Python
tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用
Jan 20 #Python
tensorflow入门:TFRecordDataset变长数据的batch读取详解
Jan 20 #Python
python如何通过pyqt5实现进度条
Jan 20 #Python
python super用法及原理详解
Jan 20 #Python
You might like
重置版宣传动画
2020/04/09 魔兽争霸
Get或Post提交值的非法数据处理
2006/10/09 PHP
PHP 采集获取指定网址的内容
2010/01/05 PHP
php无限分类且支持输出树状图的详细介绍
2013/06/19 PHP
关于php程序报date()警告的处理(date_default_timezone_set)
2013/10/22 PHP
THINKPHP支持YAML配置文件的设置方法
2015/03/17 PHP
php5.4传引用时报错问题分析
2016/01/22 PHP
php 中奖概率算法实现代码
2017/01/25 PHP
php解析mht文件转换成html的实例
2017/03/13 PHP
PHP+ajax实现获取新闻数据简单示例
2018/05/08 PHP
Thinkphp自定义生成缩略图尺寸的方法
2019/08/05 PHP
PHP使用redis位图bitMap 实现签到功能
2019/10/08 PHP
Extjs学习笔记之六 面版
2010/01/08 Javascript
用显卡加速,轻松把笔记本打造成取暖器的办法!
2013/04/17 Javascript
Jquery中$.get(),$.post(),$.ajax(),$.getJSON()的用法总结
2013/11/14 Javascript
jQuery表单元素选择器代码实例
2017/02/06 Javascript
详解webpack自动生成html页面
2017/06/29 Javascript
js 获取元素的具体样式信息getcss(实例讲解)
2017/07/05 Javascript
详解Layer弹出层样式
2017/08/21 Javascript
基于Vue实现可以拖拽的树形表格实例详解
2018/10/18 Javascript
JS计算两个数组的交集、差集、并集、补集(多种实现方式)
2019/05/21 Javascript
vue实现全屏滚动效果(非fullpage.js)
2020/03/07 Javascript
用Python写一个无界面的2048小游戏
2016/05/24 Python
Python性能提升之延迟初始化
2016/12/04 Python
pygame游戏之旅 添加游戏介绍
2018/11/20 Python
HTML5 canvas基本绘图之绘制矩形
2016/06/27 HTML / CSS
匡威帆布鞋美国官网:Converse美国
2016/08/22 全球购物
美国电子元器件分销商:Newark element14
2018/01/13 全球购物
编写一个类体现构造,公有,私有方法,静态,私有变量
2013/08/10 面试题
客户代表自我评价范例
2013/09/24 职场文书
弘扬职业精神演讲稿
2014/03/20 职场文书
超市七夕促销活动方案
2014/08/28 职场文书
大学升旗仪式主持词
2015/07/04 职场文书
python实战之用emoji表情生成文字
2021/05/08 Python
gateway与spring-boot-starter-web冲突问题的解决
2021/07/16 Java/Android
Mysql事务索引知识汇总
2022/03/17 MySQL