使用Python OpenCV为CNN增加图像样本的实现


Posted in Python onJune 10, 2019

我们在做深度学习的过程中,经常面临图片样本不足、不平衡的情况,在本文中,作者结合实际工作经验,通过图像的移动、缩放、旋转、增加噪声等图像变换技术,能快速、简便的增加样本数量。

本文所有案例,使用OpenCV跨平台计算机视觉库,在Python3.6上实现,关于Python及OpenCV安装使用,请参照本人早先资料,详见参考内容。

1. 图片拼接及平移

1.1. 图像移动

图像平移是将图像的所有像素坐标进行水平或垂直方向移动,也就是所有像素按照给定的偏移量在水平方向上沿x轴、垂直方向上沿y轴移动。

#移动图像,让出边缘,大小不变(此方法比较笨了)
def move_img(img_file1,out_file,tunnel,border_position,border_width):
  print('file1=' + img_file1 )
  img1 = cv2.imread(img_file1, cv2.IMREAD_GRAYSCALE)
  hight,width = img1.shape
  # 初始化空图
  final_matrix = np.zeros((hight,width), np.uint8) #,tunnel), np.uint8) #高*款(y,x)20*20*1
  # change 
  x1=0
  y1=hight
  x2=width
  y2=0  #图片高度,坐标起点从上到下
  if border_position =='top':
    final_matrix[y2:y1 - border_width, x1:x2] = img1[y2 + border_width:y1, x1:x2]
  #左侧增加边或空白
  if border_position == 'left':
    final_matrix[y2 :y1, x1:x2 - border_width] = img1[y2:y1, x1 + border_width:x2]

  if border_position == 'right':
    final_matrix[y2 :y1, x1 + border_width:x2] = img1[y2:y1, x1:x2 - border_width]
  #底部增加边或空白
  if border_position =='bottom':
    final_matrix[y2 + border_width :y1, x1:x2] = img1[y2:y1 - border_width , x1:x2]
  if border_position =='copy':
    final_matrix[y2 :y1, x1:x2] = img1[y2:y1 , x1:x2]

  cv2.imwrite(out_file, final_matrix) 

  return final_matrix

使用Python OpenCV为CNN增加图像样本的实现

样例代码,详见第5章节。

1.2. 图片拼接

图片拼接是分别读取图片,新建一个目标像素大小的0矩阵,最后将读取的图片替换新建矩阵中目标位置上的元素即可。主要可用于图像切换场景,例如常见的齿轮式数字仪表盘,数字进位时出现的半个数字。

#图像四周拼接边缘,大小不变
def splicing_img(img_file1,img_file2,out_file,tunnel,border_position,border_width):
  print('file1=' + img_file1 + ', file2=' + img_file2)
  img1 = cv2.imread(img_file1, cv2.IMREAD_GRAYSCALE)
  img2 = cv2.imread(img_file2, cv2.IMREAD_GRAYSCALE)
  #第二个参数为如何读取图片,包括cv2.IMREAD_COLOR:读入一副彩色图片;cv2.IMREAD_GRAYSCALE:以灰度模式读入图片;cv2.IMREAD_UNCHANGED:读入一幅图片,并包括其alpha通道。
  hight,width = img1.shape
  final_matrix = np.zeros((hight,width), np.uint8) #,tunnel), np.uint8) #高*款(y,x)20*20*1
  # change 
  x1=0
  y1=hight
  x2=width
  y2=0  #图片高度,坐标起点从上到下
  if border_position =='top':
    final_matrix[y2 + border_width:y1, x1:x2] = img1[y2:y1 - border_width, x1:x2]
    final_matrix[y2:border_width, x1:x2] = img2[y2:border_width, x1:x2]
  #左侧增加边或空白
  if border_position == 'left':
    final_matrix[y2 :y1, x1+ border_width:x2] = img1[y2:y1, x1:x2 - border_width]
    final_matrix[y2:y1, x1:border_width] = img2[y2:y1, x1:border_width]    

  if border_position == 'right':
    final_matrix[y2 :y1, x1:x2 - border_width] = img1[y2:y1, x1 + border_width:x2]
    final_matrix[y2:y1, x2-border_width:x2] = img2[y2:y1, x1:border_width]    
  #底部增加边或空白
  if border_position =='bottom':
    final_matrix[y2 :y1 - border_width, x1:x2] = img1[y2+ border_width:y1 , x1:x2]
    final_matrix[y1 - border_width:y1, x1:x2] = img2[y2:border_width, x1:x2]
  if border_position =='copy':
    final_matrix[y2 :y1, x1:x2] = img1[y2:y1 , x1:x2]

  cv2.imwrite(out_file, final_matrix) 

  return final_matrix

使用Python OpenCV为CNN增加图像样本的实现

2. 图片仿射变换之平移、旋转

2.1. 关于仿射变换

仿射变换,又称仿射映射,是指在几何中,一个向量空间进行一次线性变换并接上一个平移,变换为另一个向量空间。

仿射变换是在几何上定义为两个向量空间之间的一个仿射变换或者仿射映射(来自拉丁语,affine,“和…相关”)由一个非奇异的线性变换(运用一次函数进行的变换)接上一个平移变换组成。仿射变换可以通过一系列的原子变换的复合来实现,包括:平移(Translation)、缩放(Scale)、翻转(Flip)、旋转(Rotation)和剪切(Shear)。

2.2. Python上的OpenCV实现 2.2.1. 旋转

旋转是通过仿射变换实现的,首先,旋转需要先定义一个旋转矩阵,使用cv2.getRotationMatrix2D()函数。

参数1:需要旋转的中心点;

参数2:需要旋转的角度;

参数3:需要缩放的比例。

#旋转图像,输入文件名、输出文件名,旋转角度
def rotationImg(img_file1,out_file,ra):
  # 获取图片尺寸并计算图片中心点
  img = cv2.imread(img_file1, cv2.IMREAD_GRAYSCALE)
  (h, w) = img.shape[:2]
  center = (w/2, h/2)

  M = cv2.getRotationMatrix2D(center, ra, 1.0)
  rotated = cv2.warpAffine(img, M, (w, h))
  #cv2.imshow("rotated", rotated)
  #cv2.waitKey(0)
  cv2.imwrite(out_file, rotated)
  
  return rotated

使用Python OpenCV为CNN增加图像样本的实现

2.2.2. 平移

使用仿射变换平移图像,首先使用已经给出的平移矩阵M:[[1,0,x],[0,1,y]],x、y分别是x与y在横向、纵向移动像数。

使用Python OpenCV为CNN增加图像样本的实现

#仿射变换技术,平移图片,x_off:x方向平移像数;y_off:y方向平移像数,正数是右、下方移动,负数为左、上方移动
def translation_img(img_file1,out_file,x_off,y_off):
  img = cv2.imread(img_file1, cv2.IMREAD_GRAYSCALE)
  rows,cols = img.shape
  # 定义平移矩阵,需要是numpy的float32类型
  # x轴平移x_off,y轴平移y_off, 2*3矩阵
  M = np.float32([[1,0,x_off],[0,1,y_off]])
  dst = cv2.warpAffine(img,M,(cols,rows))
  
  cv2.imwrite(out_file, dst)

使用Python OpenCV为CNN增加图像样本的实现

3. 图片缩放及剪裁

3.1. 图片缩放

图片缩放使用CV2的cv2.resize()函数,函数语法如下:cv2.resize(img, (dstWeight,dstHeight)),第一个参数是源图像数据,第二个参数(目标宽度,目标高度)。

在实际应用中,输入图像大小是固定不变,这样在缩放图片后,如果是放大,则需要剪裁,如果缩写,则出现空余区域。(注:本案例中参数deviation,用于取放大图像的起点位置,参照位置为左上角)

#缩放,输入文件名,输出文件名,放大高与宽,偏离度
def resizeImg(img_file1,out_file,dstWeight,dstHeight,deviation):
  img1 = cv2.imread(img_file1, cv2.IMREAD_GRAYSCALE)
  imgshape = img1.shape

  h = imgshape[0]
  w = imgshape[1]
  final_matrix = np.zeros((h,w), np.uint8)
  x1=0
  y1=h
  x2=w
  y2=0  #图片高度,坐标起点从上到下  
  dst = cv2.resize(img1, (dstWeight,dstHeight))
  if h<dstHeight:
    final_matrix[y2 :y1, x1:x2] = dst[y2+deviation:y1+deviation , x1+deviation:x2+deviation]
  else:
    if deviation == 0:
      final_matrix[y2 :dstHeight, x1:dstWeight] = dst[y2 :dstHeight,x1 :dstWeight]
    else:
      final_matrix[y2 + deviation:dstHeight + deviation, x1 + deviation:dstWeight + deviation] = dst[y2 :dstHeight,x1 :dstWeight]
  cv2.imwrite(out_file, final_matrix)
  
  return final_matrix

3.2. 图片剪裁

在做图像处理时,一般是图像大小保持一致,因此,图片剪裁时,图片大小不变,去掉不需要的部分。

#剪切图片
def cut_img(img_file1,out_file,top_off,left_off,right_off,bottom_off):
  img1 = cv2.imread(img_file1, cv2.IMREAD_GRAYSCALE)
  hight,width = img1.shape  
  x1=0
  y1=hight
  x2=width
  y2=0  #图片高度,坐标起点从上到下hight,width = img1.shape
  
  #灰度图像,不使用通道tunnel
  final_matrix = np.zeros((hight,width), np.uint8) #,tunnel), np.uint8) #高*款(y,x)20*20*1
  final_matrix[y2 + top_off:y1 - bottom_off, x1 + left_off:x2 - right_off] = img1[y2 + top_off:y1 - bottom_off, x1 + left_off:x2 - right_off]

  cv2.imwrite(out_file, final_matrix) 

  return final_matrix

使用Python OpenCV为CNN增加图像样本的实现

4. 图片增加高斯噪声/椒盐噪声

在matlab中,存在执行直接得函数来添加高斯噪声和椒盐噪声。Python-OpenCV中虽然不存在直接得函数,但是很容易使用相关的函数来实现。

4.1. 添加盐椒噪声

# 添加椒盐噪声,prob:噪声比例 
def sp_noiseImg(img_file1,prob):
  image = cv2.imread(img_file1, cv2.IMREAD_GRAYSCALE)
  output = np.zeros(image.shape,np.uint8)
  thres = 1 - prob 
  for i in range(image.shape[0]):
    for j in range(image.shape[1]):
      rdn = random.random()
      if rdn < prob:
        output[i][j] = 0
      elif rdn > thres:
        output[i][j] = 255
      else:
        output[i][j] = image[i][j]
  return output

使用Python OpenCV为CNN增加图像样本的实现 

噪声比依次是:0.1、0.05、0.01。

4.2. 添加高斯噪声

# 添加高斯噪声
# mean : 均值
# var : 方差
def gasuss_noiseImg(img_file1, out_file, mean=0, var=0.001):
  image = cv2.imread(img_file1, cv2.IMREAD_GRAYSCALE)
  image = np.array(image/255, dtype=float)
  noise = np.random.normal(mean, var ** 0.5, image.shape)
  out = image + noise
  if out.min() < 0:
    low_clip = -1.
  else:
    low_clip = 0.
  out = np.clip(out, low_clip, 1.0)
  out = np.uint8(out*255)
  cv2.imwrite(out_file, out)
  
  return out

5. 代码测试

'''
Created on 2019年5月20日

@author: xiaoyw
'''
#coding: utf-8
import numpy as np
import cv2
import os
import random

#函数部分略过,见上文
if __name__ == '__main__':
  file1 = 'dog.jpg'
  
  move_img(file1,'timg11.jpg',1,'top',35)
  move_img(file1,'timg12.jpg',1,'left',35)
  move_img(file1,'timg13.jpg',1,'right',35)
  move_img(file1,'timg14.jpg',1,'bottom',35)
  cut_img(file1,'dog_cut.jpg',20,10,20,30)
  rotationImg(file1,'dog_ra1.jpg',30)
  rotationImg(file1,'dog_ra1.jpg',60)
  rotationImg(file1,'dog_ra2.jpg',-90)
  sp_noiseImg(file1,'dog_sp_01.jpg',0.01) 
  sp_noiseImg(file1,'dog_sp_05.jpg',0.05)
  sp_noiseImg(file1,'dog_sp_10.jpg',0.1) 
  resizeImg(file1,'dog_big.jpg',250,280,0)
  resizeImg(file1,'dog_small.jpg',100,200,0)
  splicing_img(file1,file1,'dog2.jpg',1,'right',50)
  translation_img(file1,'timg15.jpg',10,10)
  translation_img(file1,'timg16.jpg',-20,-30)

  pass

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python 参数列表中的self 显式不等于冗余
Dec 01 Python
python编写网页爬虫脚本并实现APScheduler调度
Jul 28 Python
python3 pillow生成简单验证码图片的示例
Sep 19 Python
python不换行之end=与逗号的意思及用途
Nov 21 Python
python实现机器学习之元线性回归
Sep 06 Python
python最小生成树kruskal与prim算法详解
Jan 17 Python
对python实现模板生成脚本的方法详解
Jan 30 Python
Python XlsxWriter模块Chart类用法实例分析
Mar 11 Python
python递归法解决棋盘分割问题
Jul 17 Python
Python +Selenium解决图片验证码登录或注册问题(推荐)
Feb 09 Python
Python 实现日志同时输出到屏幕和文件
Feb 19 Python
python利用文件时间批量重命名照片和视频
Feb 09 Python
Python 虚拟空间的使用代码详解
Jun 10 #Python
在Python中过滤Windows文件名中的非法字符方法
Jun 10 #Python
对Python 检查文件名是否规范的实例详解
Jun 10 #Python
java判断三位数的实例讲解
Jun 10 #Python
Python字符串的一些操作方法总结
Jun 10 #Python
利用selenium爬虫抓取数据的基础教程
Jun 10 #Python
Python 监测文件是否更新的方法
Jun 10 #Python
You might like
Laravel 中获取上一篇和下一篇数据
2015/07/27 PHP
完美解决php 导出excle的.csv格式的数据时乱码问题
2017/02/18 PHP
PHP数据库操作三:redis用法分析
2017/08/16 PHP
PHP的imageTtfText()函数深入详解
2021/03/03 PHP
javascript 解析后的xml对象的读取方法细解
2009/07/25 Javascript
JS 文件大小判断的实现代码
2010/04/07 Javascript
一些实用的jQuery代码片段收集
2011/07/12 Javascript
silverlight线程与基于事件驱动javascript引擎(实现轨迹回放功能)
2011/08/09 Javascript
jquery 之 $().hover(func1, funct2)使用方法
2012/06/14 Javascript
在Ubuntu上安装最新版本的Node.js
2014/07/14 Javascript
多个checkbox被选中时如何判断是否有自己想要的
2014/09/22 Javascript
基于jQuery实现交互体验社会化分享代码附源码下载
2016/01/04 Javascript
js点击返回跳转到指定页面实现过程
2020/08/20 Javascript
深入理解JavaScript中Ajax
2016/08/02 Javascript
React路由管理之React Router总结
2018/05/10 Javascript
JavaScript类的继承方法小结【组合继承分析】
2018/07/11 Javascript
实例详解BootStrap的动态模态框及静态模态框
2018/08/13 Javascript
Vue在页面数据渲染完成之后的调用方法
2018/09/11 Javascript
vue插件--仿微信小程序showModel实现模态提示窗功能
2020/08/19 Javascript
[06:07]刀塔密之二:攻之吾命受之吾幸
2014/07/03 DOTA
python实现html转ubb代码(html2ubb)
2014/07/03 Python
Django静态资源URL STATIC_ROOT的配置方法
2014/11/08 Python
基础的十进制按位运算总结与在Python中的计算示例
2016/06/28 Python
详解Python实现按任意键继续/退出的功能
2016/08/19 Python
Python编程之黑板上排列组合,你舍得解开吗
2017/10/30 Python
Sublime开发python程序的示例代码
2018/01/24 Python
Python for循环生成列表的实例
2018/06/15 Python
通过字符串导入 Python 模块的方法详解
2019/10/27 Python
西班牙伏林航空公司:Vueling
2016/08/05 全球购物
澳大利亚香水在线商店:City Perfume
2020/09/02 全球购物
学生会竞选自荐信
2013/10/12 职场文书
毕业实习自我鉴定范文2014
2014/09/26 职场文书
不尊敬老师检讨书范文
2014/11/19 职场文书
2015大学生党员自我评价范文
2015/03/03 职场文书
无违反计划生育证明格式
2015/06/24 职场文书
Python游戏开发实例之graphics实现AI五子棋
2021/11/01 Python