python 学习GCN图卷积神经网络

图卷积神经网络涉及到图信号处理的相关知识,也是由图信号处理领域的知识推导发展而来,了解图信号处理的知识是理解图卷积神经网络的基础。

Posted in Python onMay 11, 2022

1. 图信号处理知识

图卷积神经网络涉及到图信号处理的相关知识,也是由图信号处理领域的知识推导发展而来,了解图信号处理的知识是理解图卷积神经网络的基础。

1.1 图的拉普拉斯矩阵

拉普拉斯矩阵是体现图结构关联的一种重要矩阵,是图卷积神经网络的一个重要部分。

1.1.1 拉普拉斯矩阵的定义及示例

python 学习GCN图卷积神经网络

实例:

python 学习GCN图卷积神经网络

按照上述计算式子,可以得到拉普拉斯矩阵为:

python 学习GCN图卷积神经网络

1.1.2 正则化拉普拉斯矩阵

python 学习GCN图卷积神经网络

1.1.3 拉普拉斯矩阵的性质

python 学习GCN图卷积神经网络

1.2 图上的傅里叶变换

傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。它将信号从时域转换到频域,从频域视角给出了信号处理的另一种解法。(1)对于图结构,可以定义图上的傅里叶变换(GFT),对于任意一个在图G上的信号x,其傅里叶变换表示为:

python 学习GCN图卷积神经网络

从线代角度,可以清晰的看出:v1,…, vn构成了N维特征空间中的一组完备基向量,G中任意一个图信号都可表示为这些基向量的线性加权求和,系数为图信号对应傅里叶基上的傅里叶系数。

回到之前提到的拉普拉斯矩阵刻画平滑度的总变差:

python 学习GCN图卷积神经网络

可以看成:刻画图平滑度的总变差是图中所有节点特征值的线性组合,权值为傅里叶系数的平方。总变差取最小值的条件是图信号与最小的特征值所对应的特征向量完全重合,结合其描述图信号整体平滑度的意义,可将特征值等价成频率:特征值越低,频率越低,对应的傅里叶基变化缓慢,即相近节点的信号值趋于一致。

把图信号所有的傅里叶系数结合称为频谱(spectrum),频域的视角从全局视角既考虑信号本身,也考虑到图的结构性质。

1.3 图信号滤波器

图滤波器(Graph Filter)为对图中的频率分量进行增强或衰减,图滤波算子核心为其频率响应矩阵,为滤波器带来不同的滤波效果。

故图滤波器根据滤波效果可分为低通,高通和带通。

低通滤波器:保留低频部分,关注信号的平滑部分;

高通滤波器:保留高频部分,关注信号的剧烈变化部分;

带通滤波器:保留特定频段部分;

而拉普拉斯矩阵多项式扩展可形成图滤波器H:

python 学习GCN图卷积神经网络

2. 图卷积神经网络

2.1 数学定义

图卷积运算的数学定义为:

python 学习GCN图卷积神经网络

上述公式存在一个较大问题:学习参数为N,这涉及到整个图的所有节点,对于大规模数据极易发生过拟合。

进一步的化简推导:将之前说到的拉普拉斯矩阵的多项式展开代替上述可训练参数矩阵。

python 学习GCN图卷积神经网络

此结构内容即定义为图卷积层(GCN layer),有图卷积层堆叠得到的网络模型即为图卷积网络GCN。

2.2 GCN的理解及时间复杂度

图卷积层是对频率响应矩阵的极大化简,将本要训练的图滤波器直接退化为重归一化拉普拉斯矩阵

python 学习GCN图卷积神经网络

2.3 GCN的优缺点

优点:GCN作为近年图神经网络的基础之作,对处理图数据非常有效,其对图结构的结构信息和节点的属性信息同时学习,共同得到最终的节点特征表示,考虑到了节点之间的结构关联性,这在图操作中是非常重要的。

缺点:过平滑问题(多层叠加之后,节点的表示向量趋向一致,节点难以区分),由于GCN具有一个低通滤波器的作用(j聚合特征时使得节点特征不断融合),多次迭代后特征会趋于相同。

3. Pytorch代码解析

GCN层的pytorch实现:

class GraphConvolutionLayer(nn.Module):
    '''
        图卷积层:Lsym*X*W
            其中 Lsym表示正则化图拉普拉斯矩阵, X为输入特征, W为权重矩阵, X'表示输出特征;
            *表示矩阵乘法
    '''
    def __init__(self, input_dim, output_dim, use_bias=True):
        #初始化, parameters: input_dim-->输入维度, output_dim-->输出维度, use_bias-->是否使用偏置项, boolean
        super(GraphConvolutionLayer,self).__init__()
        self.input_dim=input_dim
        self.output_dim=output_dim
        self.use_bias=use_bias #是否加入偏置, 默认为True
        self.weight=nn.Parameter(torch.Tensor(input_dim, output_dim))#权重矩阵为可训练参数
        if self.use_bias==True: #加入偏置
            self.bias=nn.Parameter(torch.Tensor(output_dim)) 
        else: #设置偏置为空
            self.register_parameter('bias', None)
        self.reset_parameters()
    def reset_parameters(self):
        #初始化参数
        stdv = 1. / math.sqrt(self.weight.size(1))
        self.weight.data.uniform_(-stdv, stdv)#使用均匀分布U(-stdv,stdv)初始化权重Tensor
        if self.bias is not None:
            self.bias.data.uniform_(-stdv, stdv)
    def forward(self, adj, input_feature):
        #前向传播, parameters: adj-->邻接矩阵(输入为正则化拉普拉斯矩阵), input_future-->输入特征矩阵
        temp=torch.mm(input_feature, self.weight)#矩阵乘法, 得到X*W
        output_feature=torch.sparse.mm(adj, temp)#由于邻接矩阵adj为稀疏矩阵, 采用稀疏矩阵乘法提高计算效率, 得到Lsym*temp=Lsym*X*W
        if self.use_bias==True: #若设置了偏置, 加入偏置项
            output_feature+=self.bias
        return output_feature

定义两层的GCN网络模型:

class GCN(nn.Module):
    '''
        定义两层GCN网络模型
    '''
    def __init__(self, input_dim, hidden_dim, output_dim):
        #初始化, parameters: input_dim-->输入维度, hidden_dim-->隐藏层维度, output_dim-->输出维度
        super.__init__(GCN, self).__init__()
        #定义两层图卷积层
        self.gcn1=GraphConvolutionLayer(input_dim, hidden_dim)
        self.gcn2=GraphConvolutionLayer(hidden_dim, output_dim)
    def forward(self, adj, feature):
        #前向传播, parameters: adj-->邻接矩阵, feature-->输入特征
        x=F.relu(self.gcn1(adj, feature))
        x=self.gcn2(adj, x)
        return F.log_softmax(x, dim=1)

以上就是GCN图卷积神经网络原理及代码解析的详细内容!


Tags in this post...

Python 相关文章推荐
13个最常用的Python深度学习库介绍
Oct 28 Python
Python操作Sql Server 2008数据库的方法详解
May 17 Python
python通过Windows下远程控制Linux系统
Jun 20 Python
JavaScript中的模拟事件和自定义事件实例分析
Jul 27 Python
python实现简单的文字识别
Nov 27 Python
python中matplotlib条件背景颜色的实现
Sep 02 Python
Python 3.6 中使用pdfminer解析pdf文件的实现
Sep 25 Python
解决Python中回文数和质数的问题
Nov 24 Python
Python 炫技操作之合并字典的七种方法
Apr 10 Python
Python2与Python3关于字符串编码处理的差别总结
Sep 07 Python
python破解同事的压缩包密码
Oct 14 Python
如何利用python实现列表嵌套字典取值
Jun 10 Python
Python+Pillow+Pytesseract实现验证码识别
May 11 #Python
Python 绘制多因子柱状图
PyCharm 配置SSH和SFTP连接远程服务器
May 11 #Python
Python 文字识别
May 11 #Python
解决Python保存文件名太长OSError: [Errno 36] File name too long
May 11 #Python
Python 匹配文本并在其上一行追加文本
May 11 #Python
Python 一键获取电脑浏览器的账号密码
May 11 #Python
You might like
图解上海144收音机
2021/03/02 无线电
apache mysql php 源码编译使用方法
2012/05/03 PHP
一个简单的php加密解密函数(动态加密)
2013/06/19 PHP
最新版本PHP 7 vs HHVM 多角度比较
2016/02/14 PHP
yii2带搜索功能的下拉框实例详解
2016/05/12 PHP
Laravel下生成验证码的类
2017/11/15 PHP
ThinkPHP5框架中使用JWT的方法示例
2020/06/03 PHP
不使用中间变量,交换int型的 a, b两个变量的值。
2010/10/29 Javascript
js使下拉列表框可编辑不止是选择
2013/12/12 Javascript
JS实现图片无间断滚动代码汇总
2014/07/30 Javascript
jQuery中ajax的load()方法用法实例
2014/12/26 Javascript
深入浅析JSON.parse()、JSON.stringify()和eval()的作用详解
2016/04/03 Javascript
浅谈js的url解析函数封装
2016/06/28 Javascript
AngularJS基础 ng-srcset 指令简单示例
2016/08/03 Javascript
Angular2从搭建环境到开发步骤详解
2016/10/17 Javascript
QRCode.js:基于JQuery的生成二维码JS库的使用
2017/06/23 jQuery
简单谈谈原生js的math对象
2017/06/27 Javascript
BootStrap TreeView使用实例详解
2017/11/01 Javascript
基于vue-cli创建的项目的目录结构及说明介绍
2017/11/23 Javascript
JavaScript 预解析的4种实现方法解析
2019/09/03 Javascript
python之yield表达式学习
2014/09/02 Python
python中的格式化输出用法总结
2016/07/28 Python
Python 3.7新功能之dataclass装饰器详解
2018/04/21 Python
Python实现iOS自动化打包详解步骤
2018/10/03 Python
基于python tkinter的点名小程序功能的实例代码
2020/08/22 Python
Django日志及中间件模块应用案例
2020/09/10 Python
Python 使用office365邮箱的示例
2020/10/29 Python
5个你不知道的HTML5的接口介绍
2013/08/07 HTML / CSS
美国在线和移动免费会员制批发零售商:Boxed(移动端的Costco)
2020/01/02 全球购物
个人简历自我评价
2014/02/02 职场文书
学校献爱心活动总结
2014/07/08 职场文书
初三语文教学计划
2015/01/22 职场文书
go语言map与string的相互转换的实现
2021/04/07 Golang
JavaScript嵌入百度地图API的最详细方法
2021/04/16 Javascript
CSS3新特性详解(五):多列columns column-count和flex布局
2021/04/30 HTML / CSS
浅谈Python数学建模之数据导入
2021/06/23 Python