Posted in Python onJuly 23, 2018
本文实例为大家分享了python实现图片批量压缩程序的具体代码,供大家参考,具体内容如下
说明
- 运行环境:Win10 Pycharm
- 程序没有用到面向对象编程方法,只是简单的面向过程设计
- 用到的模块:PIL、os、sys
- 使用方法: 在Pycharm的terminal中输入”python xxx.py source_dir dest_dir”就可以把source_dir中的图片文件进行压缩并保存到dest_dir中
源码
from PIL import Image import os import sys # 定义可以识别的图片文件类型,可以自行扩充 valid_file_type = ['.jpg', '.png'] # 定义压缩比,数值越大,压缩越小 SIZE_normal = 1.0 SIZE_small = 1.5 SIZE_more_small = 2.0 def make_directory(directory): """创建目录""" os.makedirs(directory) def directory_exists(directory): """判断目录是否存在""" if os.path.exists(directory): return True else: return False def list_img_file(directory): """列出目录下所有文件,并筛选出图片文件列表返回""" old_list = os.listdir(directory) # print old_list new_list = [] for filename in old_list: if os.path.isfile(filename): f, e = os.path.splitext(filename) if e in valid_file_type: new_list.append(filename) else: pass else: pass # print new_list return new_list def print_help(): print """ This program helps compress many image files you can choose which scale you want to compress your img(jpg/png/etc) 1) normal compress(4M to 1M around) 2) small compress(4M to 500K around) 3) smaller compress(4M to 300K around) """ def compress(choose, des_dir, file_list): """压缩算法,img.thumbnail对图片进行压缩,还可以改变宽高数值进行压缩""" if choose == '1': scale = SIZE_normal if choose == '2': scale = SIZE_small if choose == '3': scale = SIZE_more_small for infile in file_list: img = Image.open(infile) # size_of_file = os.path.getsize(infile) w, h = img.size img.thumbnail((int(w/scale), int(h/scale))) img.save(des_dir + '/' + infile) if __name__ == "__main__": src_dir, des_dir = sys.argv[1], sys.argv[2] if directory_exists(src_dir): if not directory_exists(des_dir): make_directory(des_dir) # business logic file_list = list_img_file(src_dir) # print file_list if file_list: print_help() choose = raw_input("enter your choice:") compress(choose, des_dir, file_list) else: pass else: print "source directory not exist!"
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。
python实现图片批量压缩程序
- Author -
lannooooooooooo声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@