python实现人工蜂群算法


Posted in Python onSeptember 18, 2020

ABSIndividual.py

import numpy as np
import ObjFunction


class ABSIndividual:

  '''
  individual of artificial bee swarm algorithm
  '''

  def __init__(self, vardim, bound):
    '''
    vardim: dimension of variables
    bound: boundaries of variables
    '''
    self.vardim = vardim
    self.bound = bound
    self.fitness = 0.
    self.trials = 0

  def generate(self):
    '''
    generate a random chromsome for artificial bee swarm algorithm
    '''
    len = self.vardim
    rnd = np.random.random(size=len)
    self.chrom = np.zeros(len)
    for i in xrange(0, len):
      self.chrom[i] = self.bound[0, i] + \
        (self.bound[1, i] - self.bound[0, i]) * rnd[i]

  def calculateFitness(self):
    '''
    calculate the fitness of the chromsome
    '''
    self.fitness = ObjFunction.GrieFunc(
      self.vardim, self.chrom, self.bound)

ABS.py

import numpy as np
from ABSIndividual import ABSIndividual
import random
import copy
import matplotlib.pyplot as plt


class ArtificialBeeSwarm:

  '''
  the class for artificial bee swarm algorithm
  '''

  def __init__(self, sizepop, vardim, bound, MAXGEN, params):
    '''
    sizepop: population sizepop
    vardim: dimension of variables
    bound: boundaries of variables
    MAXGEN: termination condition
    params: algorithm required parameters, it is a list which is consisting of[trailLimit, C]
    '''
    self.sizepop = sizepop
    self.vardim = vardim
    self.bound = bound
    self.foodSource = self.sizepop / 2
    self.MAXGEN = MAXGEN
    self.params = params
    self.population = []
    self.fitness = np.zeros((self.sizepop, 1))
    self.trace = np.zeros((self.MAXGEN, 2))

  def initialize(self):
    '''
    initialize the population of abs
    '''
    for i in xrange(0, self.foodSource):
      ind = ABSIndividual(self.vardim, self.bound)
      ind.generate()
      self.population.append(ind)

  def evaluation(self):
    '''
    evaluation the fitness of the population
    '''
    for i in xrange(0, self.foodSource):
      self.population[i].calculateFitness()
      self.fitness[i] = self.population[i].fitness

  def employedBeePhase(self):
    '''
    employed bee phase
    '''
    for i in xrange(0, self.foodSource):
      k = np.random.random_integers(0, self.vardim - 1)
      j = np.random.random_integers(0, self.foodSource - 1)
      while j == i:
        j = np.random.random_integers(0, self.foodSource - 1)
      vi = copy.deepcopy(self.population[i])
      # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
      #   vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
      # for k in xrange(0, self.vardim):
      #   if vi.chrom[k] < self.bound[0, k]:
      #     vi.chrom[k] = self.bound[0, k]
      #   if vi.chrom[k] > self.bound[1, k]:
      #     vi.chrom[k] = self.bound[1, k]
      vi.chrom[
        k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
      if vi.chrom[k] < self.bound[0, k]:
        vi.chrom[k] = self.bound[0, k]
      if vi.chrom[k] > self.bound[1, k]:
        vi.chrom[k] = self.bound[1, k]
      vi.calculateFitness()
      if vi.fitness > self.fitness[fi]:
        self.population[fi] = vi
        self.fitness[fi] = vi.fitness
        if vi.fitness > self.best.fitness:
          self.best = vi
      vi.calculateFitness()
      if vi.fitness > self.fitness[i]:
        self.population[i] = vi
        self.fitness[i] = vi.fitness
        if vi.fitness > self.best.fitness:
          self.best = vi
      else:
        self.population[i].trials += 1

  def onlookerBeePhase(self):
    '''
    onlooker bee phase
    '''
    accuFitness = np.zeros((self.foodSource, 1))
    maxFitness = np.max(self.fitness)

    for i in xrange(0, self.foodSource):
      accuFitness[i] = 0.9 * self.fitness[i] / maxFitness + 0.1

    for i in xrange(0, self.foodSource):
      for fi in xrange(0, self.foodSource):
        r = random.random()
        if r < accuFitness[i]:
          k = np.random.random_integers(0, self.vardim - 1)
          j = np.random.random_integers(0, self.foodSource - 1)
          while j == fi:
            j = np.random.random_integers(0, self.foodSource - 1)
          vi = copy.deepcopy(self.population[fi])
          # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
          #   vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
          # for k in xrange(0, self.vardim):
          #   if vi.chrom[k] < self.bound[0, k]:
          #     vi.chrom[k] = self.bound[0, k]
          #   if vi.chrom[k] > self.bound[1, k]:
          #     vi.chrom[k] = self.bound[1, k]
          vi.chrom[
            k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
          if vi.chrom[k] < self.bound[0, k]:
            vi.chrom[k] = self.bound[0, k]
          if vi.chrom[k] > self.bound[1, k]:
            vi.chrom[k] = self.bound[1, k]
          vi.calculateFitness()
          if vi.fitness > self.fitness[fi]:
            self.population[fi] = vi
            self.fitness[fi] = vi.fitness
            if vi.fitness > self.best.fitness:
              self.best = vi
          else:
            self.population[fi].trials += 1
          break

  def scoutBeePhase(self):
    '''
    scout bee phase
    '''
    for i in xrange(0, self.foodSource):
      if self.population[i].trials > self.params[0]:
        self.population[i].generate()
        self.population[i].trials = 0
        self.population[i].calculateFitness()
        self.fitness[i] = self.population[i].fitness

  def solve(self):
    '''
    the evolution process of the abs algorithm
    '''
    self.t = 0
    self.initialize()
    self.evaluation()
    best = np.max(self.fitness)
    bestIndex = np.argmax(self.fitness)
    self.best = copy.deepcopy(self.population[bestIndex])
    self.avefitness = np.mean(self.fitness)
    self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
    self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
    print("Generation %d: optimal function value is: %f; average function value is %f" % (
      self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    while self.t < self.MAXGEN - 1:
      self.t += 1
      self.employedBeePhase()
      self.onlookerBeePhase()
      self.scoutBeePhase()
      best = np.max(self.fitness)
      bestIndex = np.argmax(self.fitness)
      if best > self.best.fitness:
        self.best = copy.deepcopy(self.population[bestIndex])
      self.avefitness = np.mean(self.fitness)
      self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
      self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
      print("Generation %d: optimal function value is: %f; average function value is %f" % (
        self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    print("Optimal function value is: %f; " % self.trace[self.t, 0])
    print "Optimal solution is:"
    print self.best.chrom
    self.printResult()

  def printResult(self):
    '''
    plot the result of abs algorithm
    '''
    x = np.arange(0, self.MAXGEN)
    y1 = self.trace[:, 0]
    y2 = self.trace[:, 1]
    plt.plot(x, y1, 'r', label='optimal value')
    plt.plot(x, y2, 'g', label='average value')
    plt.xlabel("Iteration")
    plt.ylabel("function value")
    plt.title("Artificial Bee Swarm algorithm for function optimization")
    plt.legend()
    plt.show()

运行程序:

if __name__ == "__main__":
 
   bound = np.tile([[-600], [600]], 25)
   abs = ABS(60, 25, bound, 1000, [100, 0.5])
   abs.solve()

ObjFunction见简单遗传算法-python实现。

以上就是python实现人工蜂群算法的详细内容,更多关于python 人工蜂群算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python实现根据月份和日期得到星座的方法
Mar 27 Python
Python的gevent框架的入门教程
Apr 29 Python
python操作sqlite的CRUD实例分析
May 08 Python
Python简单生成随机姓名的方法示例
Dec 27 Python
Python标准库笔记struct模块的使用
Feb 22 Python
Python使用tkinter库实现文本显示用户输入功能示例
May 30 Python
Python闭包执行时值的传递方式实例分析
Jun 04 Python
python 使用plt画图,去除图片四周的白边方法
Jul 09 Python
numpy.ndarray 实现对特定行或列取值
Dec 05 Python
python实现简单的购物程序代码实例
Mar 03 Python
利用Opencv实现图片的油画特效实例
Feb 28 Python
python爬取股票最新数据并用excel绘制树状图的示例
Mar 01 Python
Python猫眼电影最近上映的电影票房信息
Sep 18 #Python
python实现简单遗传算法
Sep 18 #Python
详解python 支持向量机(SVM)算法
Sep 18 #Python
python利用线程实现多任务
Sep 18 #Python
Pycharm的Available Packages为空的解决方法
Sep 18 #Python
Pycharm Available Package无法显示/安装包的问题Error Loading Package List解决
Sep 18 #Python
pycharm 代码自动补全的实现方法(图文)
Sep 18 #Python
You might like
PHP中for循环语句的几种变型
2006/11/26 PHP
页面利用渐进式JPEG来提升用户体验度
2014/12/01 PHP
解决PHP 7编译安装错误:cannot stat ‘phar.phar’: No such file or directory
2017/02/25 PHP
php校验公钥是否可用的实例方法
2019/09/17 PHP
javascript 字符串连接的性能问题(多浏览器)
2008/11/18 Javascript
input 和 textarea 输入框最大文字限制的jquery插件
2011/10/27 Javascript
JavaScript之Getters和Setters 平台支持等详细介绍
2012/12/07 Javascript
使用js对select动态添加和删除OPTION示例代码
2013/08/12 Javascript
为Javascript中的String对象添加去除左右空格的方法(示例代码)
2013/11/30 Javascript
分享javascript、jquery实用代码段
2016/10/20 Javascript
利用Javascript裁剪图片并存储的简单实现
2017/03/13 Javascript
详解JavaScript数组过滤相同元素的5种方法
2017/05/23 Javascript
JS通过调用微信API实现微信支付功能的方法示例
2017/06/29 Javascript
vue.js 实现图片本地预览 裁剪 压缩 上传功能
2018/03/01 Javascript
解决vue打包项目后刷新404的问题
2018/03/06 Javascript
angularJs中json数据转换与本地存储的实例
2018/10/08 Javascript
微信小程序背景音乐开发详解
2019/12/12 Javascript
Vue切换Tab动态渲染组件的操作
2020/09/21 Javascript
Python3实现的字典遍历操作详解
2018/04/18 Python
Linux下python3.7.0安装教程
2018/07/30 Python
Django框架 查询Extra功能实现解析
2019/09/04 Python
Python基于Tensor FLow的图像处理操作详解
2020/01/15 Python
pytorch 图像中的数据预处理和批标准化实例
2020/01/15 Python
Pycharm 2020.1 版配置优化的详细教程
2020/08/07 Python
python实现每天自动签到领积分的示例代码
2020/08/18 Python
python爬虫中抓取指数的实例讲解
2020/12/01 Python
pycharm 使用anaconda为默认环境的操作
2021/02/05 Python
用CSS3将你的设计带入下个高度
2009/08/08 HTML / CSS
高一历史教学反思
2014/01/13 职场文书
试用期员工工作自我评价
2014/09/10 职场文书
群众路线教育实践活动方案
2014/10/31 职场文书
全陪导游词
2015/02/04 职场文书
催款律师函范文
2015/05/27 职场文书
毕业实习单位意见
2015/06/04 职场文书
公司环境卫生管理制度
2015/08/05 职场文书
PostgreSQL出现死锁该如何解决
2022/05/30 PostgreSQL