python实现人工蜂群算法


Posted in Python onSeptember 18, 2020

ABSIndividual.py

import numpy as np
import ObjFunction


class ABSIndividual:

  '''
  individual of artificial bee swarm algorithm
  '''

  def __init__(self, vardim, bound):
    '''
    vardim: dimension of variables
    bound: boundaries of variables
    '''
    self.vardim = vardim
    self.bound = bound
    self.fitness = 0.
    self.trials = 0

  def generate(self):
    '''
    generate a random chromsome for artificial bee swarm algorithm
    '''
    len = self.vardim
    rnd = np.random.random(size=len)
    self.chrom = np.zeros(len)
    for i in xrange(0, len):
      self.chrom[i] = self.bound[0, i] + \
        (self.bound[1, i] - self.bound[0, i]) * rnd[i]

  def calculateFitness(self):
    '''
    calculate the fitness of the chromsome
    '''
    self.fitness = ObjFunction.GrieFunc(
      self.vardim, self.chrom, self.bound)

ABS.py

import numpy as np
from ABSIndividual import ABSIndividual
import random
import copy
import matplotlib.pyplot as plt


class ArtificialBeeSwarm:

  '''
  the class for artificial bee swarm algorithm
  '''

  def __init__(self, sizepop, vardim, bound, MAXGEN, params):
    '''
    sizepop: population sizepop
    vardim: dimension of variables
    bound: boundaries of variables
    MAXGEN: termination condition
    params: algorithm required parameters, it is a list which is consisting of[trailLimit, C]
    '''
    self.sizepop = sizepop
    self.vardim = vardim
    self.bound = bound
    self.foodSource = self.sizepop / 2
    self.MAXGEN = MAXGEN
    self.params = params
    self.population = []
    self.fitness = np.zeros((self.sizepop, 1))
    self.trace = np.zeros((self.MAXGEN, 2))

  def initialize(self):
    '''
    initialize the population of abs
    '''
    for i in xrange(0, self.foodSource):
      ind = ABSIndividual(self.vardim, self.bound)
      ind.generate()
      self.population.append(ind)

  def evaluation(self):
    '''
    evaluation the fitness of the population
    '''
    for i in xrange(0, self.foodSource):
      self.population[i].calculateFitness()
      self.fitness[i] = self.population[i].fitness

  def employedBeePhase(self):
    '''
    employed bee phase
    '''
    for i in xrange(0, self.foodSource):
      k = np.random.random_integers(0, self.vardim - 1)
      j = np.random.random_integers(0, self.foodSource - 1)
      while j == i:
        j = np.random.random_integers(0, self.foodSource - 1)
      vi = copy.deepcopy(self.population[i])
      # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
      #   vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
      # for k in xrange(0, self.vardim):
      #   if vi.chrom[k] < self.bound[0, k]:
      #     vi.chrom[k] = self.bound[0, k]
      #   if vi.chrom[k] > self.bound[1, k]:
      #     vi.chrom[k] = self.bound[1, k]
      vi.chrom[
        k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
      if vi.chrom[k] < self.bound[0, k]:
        vi.chrom[k] = self.bound[0, k]
      if vi.chrom[k] > self.bound[1, k]:
        vi.chrom[k] = self.bound[1, k]
      vi.calculateFitness()
      if vi.fitness > self.fitness[fi]:
        self.population[fi] = vi
        self.fitness[fi] = vi.fitness
        if vi.fitness > self.best.fitness:
          self.best = vi
      vi.calculateFitness()
      if vi.fitness > self.fitness[i]:
        self.population[i] = vi
        self.fitness[i] = vi.fitness
        if vi.fitness > self.best.fitness:
          self.best = vi
      else:
        self.population[i].trials += 1

  def onlookerBeePhase(self):
    '''
    onlooker bee phase
    '''
    accuFitness = np.zeros((self.foodSource, 1))
    maxFitness = np.max(self.fitness)

    for i in xrange(0, self.foodSource):
      accuFitness[i] = 0.9 * self.fitness[i] / maxFitness + 0.1

    for i in xrange(0, self.foodSource):
      for fi in xrange(0, self.foodSource):
        r = random.random()
        if r < accuFitness[i]:
          k = np.random.random_integers(0, self.vardim - 1)
          j = np.random.random_integers(0, self.foodSource - 1)
          while j == fi:
            j = np.random.random_integers(0, self.foodSource - 1)
          vi = copy.deepcopy(self.population[fi])
          # vi.chrom = vi.chrom + np.random.uniform(-1, 1, self.vardim) * (
          #   vi.chrom - self.population[j].chrom) + np.random.uniform(0.0, self.params[1], self.vardim) * (self.best.chrom - vi.chrom)
          # for k in xrange(0, self.vardim):
          #   if vi.chrom[k] < self.bound[0, k]:
          #     vi.chrom[k] = self.bound[0, k]
          #   if vi.chrom[k] > self.bound[1, k]:
          #     vi.chrom[k] = self.bound[1, k]
          vi.chrom[
            k] += np.random.uniform(low=-1, high=1.0, size=1) * (vi.chrom[k] - self.population[j].chrom[k])
          if vi.chrom[k] < self.bound[0, k]:
            vi.chrom[k] = self.bound[0, k]
          if vi.chrom[k] > self.bound[1, k]:
            vi.chrom[k] = self.bound[1, k]
          vi.calculateFitness()
          if vi.fitness > self.fitness[fi]:
            self.population[fi] = vi
            self.fitness[fi] = vi.fitness
            if vi.fitness > self.best.fitness:
              self.best = vi
          else:
            self.population[fi].trials += 1
          break

  def scoutBeePhase(self):
    '''
    scout bee phase
    '''
    for i in xrange(0, self.foodSource):
      if self.population[i].trials > self.params[0]:
        self.population[i].generate()
        self.population[i].trials = 0
        self.population[i].calculateFitness()
        self.fitness[i] = self.population[i].fitness

  def solve(self):
    '''
    the evolution process of the abs algorithm
    '''
    self.t = 0
    self.initialize()
    self.evaluation()
    best = np.max(self.fitness)
    bestIndex = np.argmax(self.fitness)
    self.best = copy.deepcopy(self.population[bestIndex])
    self.avefitness = np.mean(self.fitness)
    self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
    self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
    print("Generation %d: optimal function value is: %f; average function value is %f" % (
      self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    while self.t < self.MAXGEN - 1:
      self.t += 1
      self.employedBeePhase()
      self.onlookerBeePhase()
      self.scoutBeePhase()
      best = np.max(self.fitness)
      bestIndex = np.argmax(self.fitness)
      if best > self.best.fitness:
        self.best = copy.deepcopy(self.population[bestIndex])
      self.avefitness = np.mean(self.fitness)
      self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
      self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
      print("Generation %d: optimal function value is: %f; average function value is %f" % (
        self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
    print("Optimal function value is: %f; " % self.trace[self.t, 0])
    print "Optimal solution is:"
    print self.best.chrom
    self.printResult()

  def printResult(self):
    '''
    plot the result of abs algorithm
    '''
    x = np.arange(0, self.MAXGEN)
    y1 = self.trace[:, 0]
    y2 = self.trace[:, 1]
    plt.plot(x, y1, 'r', label='optimal value')
    plt.plot(x, y2, 'g', label='average value')
    plt.xlabel("Iteration")
    plt.ylabel("function value")
    plt.title("Artificial Bee Swarm algorithm for function optimization")
    plt.legend()
    plt.show()

运行程序:

if __name__ == "__main__":
 
   bound = np.tile([[-600], [600]], 25)
   abs = ABS(60, 25, bound, 1000, [100, 0.5])
   abs.solve()

ObjFunction见简单遗传算法-python实现。

以上就是python实现人工蜂群算法的详细内容,更多关于python 人工蜂群算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
精确查找PHP WEBSHELL木马的方法(1)
Apr 12 Python
python连接池实现示例程序
Nov 26 Python
深入理解Python变量与常量
Jun 02 Python
Python从单元素字典中获取key和value的实例
Dec 31 Python
python或C++读取指定文件夹下的所有图片
Aug 31 Python
Python爬取破解无线网络wifi密码过程解析
Sep 17 Python
Django通过dwebsocket实现websocket的例子
Nov 15 Python
Python进程池Pool应用实例分析
Nov 27 Python
Python图片的横坐标汉字实例
Dec 04 Python
pytorch 实现将自己的图片数据处理成可以训练的图片类型
Jan 08 Python
Python 模拟生成动态产生验证码图片的方法
Feb 01 Python
Django+Celery实现动态配置定时任务的方法示例
May 26 Python
Python猫眼电影最近上映的电影票房信息
Sep 18 #Python
python实现简单遗传算法
Sep 18 #Python
详解python 支持向量机(SVM)算法
Sep 18 #Python
python利用线程实现多任务
Sep 18 #Python
Pycharm的Available Packages为空的解决方法
Sep 18 #Python
Pycharm Available Package无法显示/安装包的问题Error Loading Package List解决
Sep 18 #Python
pycharm 代码自动补全的实现方法(图文)
Sep 18 #Python
You might like
写一段简单的PHP建立文件夹代码
2015/01/06 PHP
CI框架支持$_GET的两种实现方法
2016/05/18 PHP
php将服务端的文件读出来显示在web页面实例
2016/10/31 PHP
jquery 插件 任意位置浮动固定层
2008/12/25 Javascript
JavaScript 权威指南(第四版) 读书笔记
2009/08/11 Javascript
js动画效果制件让图片组成动画代码分享
2014/01/14 Javascript
IE下通过a实现location.href 获取referer的值
2014/09/04 Javascript
JavaScript操作Oracle数据库示例
2015/03/06 Javascript
jquery实现手风琴效果
2015/11/20 Javascript
JavaScript如何禁止Backspace键
2015/12/02 Javascript
基于jQuery实现复选框是否选中进行答题提示
2015/12/10 Javascript
全面了解JS中的匿名函数
2016/06/29 Javascript
Node.js实现文件上传
2016/07/05 Javascript
jquery 输入框查找关键字并提亮颜色的实例代码
2018/01/23 jQuery
使用js实现将后台传入的json数据放在前台显示
2018/08/06 Javascript
vue-video-player 通过自定义按钮组件实现全屏切换效果【推荐】
2018/08/29 Javascript
在vue里使用codemirror遇到的问题
2018/11/01 Javascript
基于JS实现table导出Excel并保留样式
2020/05/19 Javascript
[04:19]DOTA2亚洲邀请赛 现场花絮
2015/03/11 DOTA
在Python中操作时间之tzset()方法的使用教程
2015/05/22 Python
Python网页正文转换语音文件的操作方法
2018/12/09 Python
Python中zip()函数的解释和可视化(实例详解)
2020/02/16 Python
一文详述 Python 中的 property 语法
2020/09/01 Python
Python绘制数码晶体管日期
2021/02/19 Python
爱尔兰电子产品购物网站:Komplett.ie
2018/04/04 全球购物
护士思想汇报
2014/01/12 职场文书
商场活动策划方案
2014/01/24 职场文书
简单的大学生自我鉴定
2014/02/18 职场文书
幼儿园庆六一活动方案
2014/03/06 职场文书
《桃林那间小木屋》教学反思
2014/05/01 职场文书
团结就是力量演讲稿
2014/05/21 职场文书
旅游节目策划方案
2014/05/26 职场文书
模特大赛策划方案
2014/05/28 职场文书
行政秘书工作自我鉴定
2014/09/15 职场文书
学校群众路线专项整治方案
2014/10/31 职场文书
2015年项目经理工作总结
2015/04/30 职场文书