python实现简单遗传算法


Posted in Python onSeptember 18, 2020

ObjFunction.py

import math


def GrieFunc(vardim, x, bound):
 """
 Griewangk function
 """
 s1 = 0.
 s2 = 1.
 for i in range(1, vardim + 1):
  s1 = s1 + x[i - 1] ** 2
  s2 = s2 * math.cos(x[i - 1] / math.sqrt(i))
 y = (1. / 4000.) * s1 - s2 + 1
 y = 1. / (1. + y)
 return y


def RastFunc(vardim, x, bound):
 """
 Rastrigin function
 """
 s = 10 * 25
 for i in range(1, vardim + 1):
  s = s + x[i - 1] ** 2 - 10 * math.cos(2 * math.pi * x[i - 1])
 return s

GAIndividual.py

import numpy as np
import ObjFunction


class GAIndividual:

 '''
 individual of genetic algorithm
 '''

 def __init__(self, vardim, bound):
  '''
  vardim: dimension of variables
  bound: boundaries of variables
  '''
  self.vardim = vardim
  self.bound = bound
  self.fitness = 0.

 def generate(self):
  '''
  generate a random chromsome for genetic algorithm
  '''
  len = self.vardim
  rnd = np.random.random(size=len)
  self.chrom = np.zeros(len)
  for i in xrange(0, len):
   self.chrom[i] = self.bound[0, i] + \
    (self.bound[1, i] - self.bound[0, i]) * rnd[i]

 def calculateFitness(self):
  '''
  calculate the fitness of the chromsome
  '''
  self.fitness = ObjFunction.GrieFunc(
   self.vardim, self.chrom, self.bound)

GeneticAlgorithm.py

import numpy as np
from GAIndividual import GAIndividual
import random
import copy
import matplotlib.pyplot as plt


class GeneticAlgorithm:

 '''
 The class for genetic algorithm
 '''

 def __init__(self, sizepop, vardim, bound, MAXGEN, params):
  '''
  sizepop: population sizepop
  vardim: dimension of variables
  bound: boundaries of variables
  MAXGEN: termination condition
  param: algorithm required parameters, it is a list which is consisting of crossover rate, mutation rate, alpha
  '''
  self.sizepop = sizepop
  self.MAXGEN = MAXGEN
  self.vardim = vardim
  self.bound = bound
  self.population = []
  self.fitness = np.zeros((self.sizepop, 1))
  self.trace = np.zeros((self.MAXGEN, 2))
  self.params = params

 def initialize(self):
  '''
  initialize the population
  '''
  for i in xrange(0, self.sizepop):
   ind = GAIndividual(self.vardim, self.bound)
   ind.generate()
   self.population.append(ind)

 def evaluate(self):
  '''
  evaluation of the population fitnesses
  '''
  for i in xrange(0, self.sizepop):
   self.population[i].calculateFitness()
   self.fitness[i] = self.population[i].fitness

 def solve(self):
  '''
  evolution process of genetic algorithm
  '''
  self.t = 0
  self.initialize()
  self.evaluate()
  best = np.max(self.fitness)
  bestIndex = np.argmax(self.fitness)
  self.best = copy.deepcopy(self.population[bestIndex])
  self.avefitness = np.mean(self.fitness)
  self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
  self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
  print("Generation %d: optimal function value is: %f; average function value is %f" % (
   self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
  while (self.t < self.MAXGEN - 1):
   self.t += 1
   self.selectionOperation()
   self.crossoverOperation()
   self.mutationOperation()
   self.evaluate()
   best = np.max(self.fitness)
   bestIndex = np.argmax(self.fitness)
   if best > self.best.fitness:
    self.best = copy.deepcopy(self.population[bestIndex])
   self.avefitness = np.mean(self.fitness)
   self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
   self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
   print("Generation %d: optimal function value is: %f; average function value is %f" % (
    self.t, self.trace[self.t, 0], self.trace[self.t, 1]))

  print("Optimal function value is: %f; " %
    self.trace[self.t, 0])
  print "Optimal solution is:"
  print self.best.chrom
  self.printResult()

 def selectionOperation(self):
  '''
  selection operation for Genetic Algorithm
  '''
  newpop = []
  totalFitness = np.sum(self.fitness)
  accuFitness = np.zeros((self.sizepop, 1))

  sum1 = 0.
  for i in xrange(0, self.sizepop):
   accuFitness[i] = sum1 + self.fitness[i] / totalFitness
   sum1 = accuFitness[i]

  for i in xrange(0, self.sizepop):
   r = random.random()
   idx = 0
   for j in xrange(0, self.sizepop - 1):
    if j == 0 and r < accuFitness[j]:
     idx = 0
     break
    elif r >= accuFitness[j] and r < accuFitness[j + 1]:
     idx = j + 1
     break
   newpop.append(self.population[idx])
  self.population = newpop

 def crossoverOperation(self):
  '''
  crossover operation for genetic algorithm
  '''
  newpop = []
  for i in xrange(0, self.sizepop, 2):
   idx1 = random.randint(0, self.sizepop - 1)
   idx2 = random.randint(0, self.sizepop - 1)
   while idx2 == idx1:
    idx2 = random.randint(0, self.sizepop - 1)
   newpop.append(copy.deepcopy(self.population[idx1]))
   newpop.append(copy.deepcopy(self.population[idx2]))
   r = random.random()
   if r < self.params[0]:
    crossPos = random.randint(1, self.vardim - 1)
    for j in xrange(crossPos, self.vardim):
     newpop[i].chrom[j] = newpop[i].chrom[
      j] * self.params[2] + (1 - self.params[2]) * newpop[i + 1].chrom[j]
     newpop[i + 1].chrom[j] = newpop[i + 1].chrom[j] * self.params[2] + \
      (1 - self.params[2]) * newpop[i].chrom[j]
  self.population = newpop

 def mutationOperation(self):
  '''
  mutation operation for genetic algorithm
  '''
  newpop = []
  for i in xrange(0, self.sizepop):
   newpop.append(copy.deepcopy(self.population[i]))
   r = random.random()
   if r < self.params[1]:
    mutatePos = random.randint(0, self.vardim - 1)
    theta = random.random()
    if theta > 0.5:
     newpop[i].chrom[mutatePos] = newpop[i].chrom[
      mutatePos] - (newpop[i].chrom[mutatePos] - self.bound[0, mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
    else:
     newpop[i].chrom[mutatePos] = newpop[i].chrom[
      mutatePos] + (self.bound[1, mutatePos] - newpop[i].chrom[mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
  self.population = newpop

 def printResult(self):
  '''
  plot the result of the genetic algorithm
  '''
  x = np.arange(0, self.MAXGEN)
  y1 = self.trace[:, 0]
  y2 = self.trace[:, 1]
  plt.plot(x, y1, 'r', label='optimal value')
  plt.plot(x, y2, 'g', label='average value')
  plt.xlabel("Iteration")
  plt.ylabel("function value")
  plt.title("Genetic algorithm for function optimization")
  plt.legend()
  plt.show()

运行程序:

if __name__ == "__main__":
 
  bound = np.tile([[-600], [600]], 25)
  ga = GA(60, 25, bound, 1000, [0.9, 0.1, 0.5])
  ga.solve()

作者:Alex Yu
出处:http://www.cnblogs.com/biaoyu/

以上就是python实现简单遗传算法的详细内容,更多关于python 遗传算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python机器学习实战之最近邻kNN分类器
Dec 20 Python
python3之模块psutil系统性能信息使用
May 30 Python
python matlibplot绘制多条曲线图
Feb 19 Python
对python中大文件的导入与导出方法详解
Dec 28 Python
python实现抖音点赞功能
Apr 07 Python
Python实现的文轩网爬虫完整示例
May 16 Python
python实现画出e指数函数的图像
Nov 21 Python
使用tensorflow进行音乐类型的分类
Aug 14 Python
python MD5加密的示例
Oct 19 Python
如何使用Pytorch搭建模型
Oct 26 Python
python批量更改目录名/文件名的方法
Apr 18 Python
python 使用tkinter与messagebox写界面和弹窗
Mar 20 Python
详解python 支持向量机(SVM)算法
Sep 18 #Python
python利用线程实现多任务
Sep 18 #Python
Pycharm的Available Packages为空的解决方法
Sep 18 #Python
Pycharm Available Package无法显示/安装包的问题Error Loading Package List解决
Sep 18 #Python
pycharm 代码自动补全的实现方法(图文)
Sep 18 #Python
PyCharm上安装Package的实现(以pandas为例)
Sep 18 #Python
Pycharm自带Git实现版本管理的方法步骤
Sep 18 #Python
You might like
PHP与SQL注入攻击[三]
2007/04/17 PHP
PHP面向对象分析设计的经验原则
2008/09/20 PHP
drupal 代码实现URL重写
2011/05/04 PHP
PHP内置的Math函数效率测试
2014/12/01 PHP
php+ajax实现无刷新数据分页的办法
2015/11/02 PHP
PHP钩子实现方法解析
2019/05/21 PHP
thinkphp框架使用JWTtoken的方法详解
2019/10/10 PHP
非常强大的 jQuery.AsyncBox 弹出对话框插件
2011/08/29 Javascript
javascript标签在页面中的位置探讨
2013/04/11 Javascript
JS图片自动轮换效果实现思路附截图
2014/04/30 Javascript
浏览器复制插件zeroclipboard使用指南
2016/03/26 Javascript
Javascript typeof与instanceof的区别
2016/10/18 Javascript
移动适配的几种方案(三种方案)
2016/11/25 Javascript
JS 中LocalStorage和SessionStorage的使用
2017/08/17 Javascript
jQuery选择器之属性筛选选择器用法详解
2017/09/19 jQuery
angular2中使用第三方js库的实例
2018/02/26 Javascript
jQuery实现的简单对话框拖动功能示例
2018/06/05 jQuery
微信小程序自定义组件之可清除的input组件
2018/07/17 Javascript
JavaScript常见事件处理程序实例总结
2019/01/05 Javascript
layui 富文本编辑器和textarea值的相互传递方法
2019/09/18 Javascript
layui+jquery支持IE8的表格分页方法
2019/09/28 jQuery
Python实现类继承实例
2014/07/04 Python
python基础教程之自定义函数介绍
2014/08/29 Python
Python中Class类用法实例分析
2015/11/12 Python
Python进行数据提取的方法总结
2016/08/22 Python
不同版本中Python matplotlib.pyplot.draw()界面绘制异常问题的解决
2017/09/24 Python
Django 后台获取文件列表 InMemoryUploadedFile的例子
2019/08/07 Python
Pycharm中import torch报错的快速解决方法
2020/03/05 Python
python怎么判断模块安装完成
2020/06/19 Python
python如何调用百度识图api
2020/09/29 Python
Python hashlib模块的使用示例
2020/10/09 Python
KENZO官网:高田贤三在法国创立的品牌
2019/05/16 全球购物
体育专业个人的求职信范文
2013/09/21 职场文书
中秋晚会策划方案
2014/06/12 职场文书
2015年世界无烟日演讲稿
2015/03/18 职场文书
详解OpenCV获取高动态范围(HDR)成像
2022/04/29 Python