python实现简单遗传算法


Posted in Python onSeptember 18, 2020

ObjFunction.py

import math


def GrieFunc(vardim, x, bound):
 """
 Griewangk function
 """
 s1 = 0.
 s2 = 1.
 for i in range(1, vardim + 1):
  s1 = s1 + x[i - 1] ** 2
  s2 = s2 * math.cos(x[i - 1] / math.sqrt(i))
 y = (1. / 4000.) * s1 - s2 + 1
 y = 1. / (1. + y)
 return y


def RastFunc(vardim, x, bound):
 """
 Rastrigin function
 """
 s = 10 * 25
 for i in range(1, vardim + 1):
  s = s + x[i - 1] ** 2 - 10 * math.cos(2 * math.pi * x[i - 1])
 return s

GAIndividual.py

import numpy as np
import ObjFunction


class GAIndividual:

 '''
 individual of genetic algorithm
 '''

 def __init__(self, vardim, bound):
  '''
  vardim: dimension of variables
  bound: boundaries of variables
  '''
  self.vardim = vardim
  self.bound = bound
  self.fitness = 0.

 def generate(self):
  '''
  generate a random chromsome for genetic algorithm
  '''
  len = self.vardim
  rnd = np.random.random(size=len)
  self.chrom = np.zeros(len)
  for i in xrange(0, len):
   self.chrom[i] = self.bound[0, i] + \
    (self.bound[1, i] - self.bound[0, i]) * rnd[i]

 def calculateFitness(self):
  '''
  calculate the fitness of the chromsome
  '''
  self.fitness = ObjFunction.GrieFunc(
   self.vardim, self.chrom, self.bound)

GeneticAlgorithm.py

import numpy as np
from GAIndividual import GAIndividual
import random
import copy
import matplotlib.pyplot as plt


class GeneticAlgorithm:

 '''
 The class for genetic algorithm
 '''

 def __init__(self, sizepop, vardim, bound, MAXGEN, params):
  '''
  sizepop: population sizepop
  vardim: dimension of variables
  bound: boundaries of variables
  MAXGEN: termination condition
  param: algorithm required parameters, it is a list which is consisting of crossover rate, mutation rate, alpha
  '''
  self.sizepop = sizepop
  self.MAXGEN = MAXGEN
  self.vardim = vardim
  self.bound = bound
  self.population = []
  self.fitness = np.zeros((self.sizepop, 1))
  self.trace = np.zeros((self.MAXGEN, 2))
  self.params = params

 def initialize(self):
  '''
  initialize the population
  '''
  for i in xrange(0, self.sizepop):
   ind = GAIndividual(self.vardim, self.bound)
   ind.generate()
   self.population.append(ind)

 def evaluate(self):
  '''
  evaluation of the population fitnesses
  '''
  for i in xrange(0, self.sizepop):
   self.population[i].calculateFitness()
   self.fitness[i] = self.population[i].fitness

 def solve(self):
  '''
  evolution process of genetic algorithm
  '''
  self.t = 0
  self.initialize()
  self.evaluate()
  best = np.max(self.fitness)
  bestIndex = np.argmax(self.fitness)
  self.best = copy.deepcopy(self.population[bestIndex])
  self.avefitness = np.mean(self.fitness)
  self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
  self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
  print("Generation %d: optimal function value is: %f; average function value is %f" % (
   self.t, self.trace[self.t, 0], self.trace[self.t, 1]))
  while (self.t < self.MAXGEN - 1):
   self.t += 1
   self.selectionOperation()
   self.crossoverOperation()
   self.mutationOperation()
   self.evaluate()
   best = np.max(self.fitness)
   bestIndex = np.argmax(self.fitness)
   if best > self.best.fitness:
    self.best = copy.deepcopy(self.population[bestIndex])
   self.avefitness = np.mean(self.fitness)
   self.trace[self.t, 0] = (1 - self.best.fitness) / self.best.fitness
   self.trace[self.t, 1] = (1 - self.avefitness) / self.avefitness
   print("Generation %d: optimal function value is: %f; average function value is %f" % (
    self.t, self.trace[self.t, 0], self.trace[self.t, 1]))

  print("Optimal function value is: %f; " %
    self.trace[self.t, 0])
  print "Optimal solution is:"
  print self.best.chrom
  self.printResult()

 def selectionOperation(self):
  '''
  selection operation for Genetic Algorithm
  '''
  newpop = []
  totalFitness = np.sum(self.fitness)
  accuFitness = np.zeros((self.sizepop, 1))

  sum1 = 0.
  for i in xrange(0, self.sizepop):
   accuFitness[i] = sum1 + self.fitness[i] / totalFitness
   sum1 = accuFitness[i]

  for i in xrange(0, self.sizepop):
   r = random.random()
   idx = 0
   for j in xrange(0, self.sizepop - 1):
    if j == 0 and r < accuFitness[j]:
     idx = 0
     break
    elif r >= accuFitness[j] and r < accuFitness[j + 1]:
     idx = j + 1
     break
   newpop.append(self.population[idx])
  self.population = newpop

 def crossoverOperation(self):
  '''
  crossover operation for genetic algorithm
  '''
  newpop = []
  for i in xrange(0, self.sizepop, 2):
   idx1 = random.randint(0, self.sizepop - 1)
   idx2 = random.randint(0, self.sizepop - 1)
   while idx2 == idx1:
    idx2 = random.randint(0, self.sizepop - 1)
   newpop.append(copy.deepcopy(self.population[idx1]))
   newpop.append(copy.deepcopy(self.population[idx2]))
   r = random.random()
   if r < self.params[0]:
    crossPos = random.randint(1, self.vardim - 1)
    for j in xrange(crossPos, self.vardim):
     newpop[i].chrom[j] = newpop[i].chrom[
      j] * self.params[2] + (1 - self.params[2]) * newpop[i + 1].chrom[j]
     newpop[i + 1].chrom[j] = newpop[i + 1].chrom[j] * self.params[2] + \
      (1 - self.params[2]) * newpop[i].chrom[j]
  self.population = newpop

 def mutationOperation(self):
  '''
  mutation operation for genetic algorithm
  '''
  newpop = []
  for i in xrange(0, self.sizepop):
   newpop.append(copy.deepcopy(self.population[i]))
   r = random.random()
   if r < self.params[1]:
    mutatePos = random.randint(0, self.vardim - 1)
    theta = random.random()
    if theta > 0.5:
     newpop[i].chrom[mutatePos] = newpop[i].chrom[
      mutatePos] - (newpop[i].chrom[mutatePos] - self.bound[0, mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
    else:
     newpop[i].chrom[mutatePos] = newpop[i].chrom[
      mutatePos] + (self.bound[1, mutatePos] - newpop[i].chrom[mutatePos]) * (1 - random.random() ** (1 - self.t / self.MAXGEN))
  self.population = newpop

 def printResult(self):
  '''
  plot the result of the genetic algorithm
  '''
  x = np.arange(0, self.MAXGEN)
  y1 = self.trace[:, 0]
  y2 = self.trace[:, 1]
  plt.plot(x, y1, 'r', label='optimal value')
  plt.plot(x, y2, 'g', label='average value')
  plt.xlabel("Iteration")
  plt.ylabel("function value")
  plt.title("Genetic algorithm for function optimization")
  plt.legend()
  plt.show()

运行程序:

if __name__ == "__main__":
 
  bound = np.tile([[-600], [600]], 25)
  ga = GA(60, 25, bound, 1000, [0.9, 0.1, 0.5])
  ga.solve()

作者:Alex Yu
出处:http://www.cnblogs.com/biaoyu/

以上就是python实现简单遗传算法的详细内容,更多关于python 遗传算法的资料请关注三水点靠木其它相关文章!

Python 相关文章推荐
python正则表达式中的括号匹配问题
Dec 14 Python
Python的Django框架中的URL配置与松耦合
Jul 15 Python
python中Apriori算法实现讲解
Dec 10 Python
Python-OpenCV基本操作方法详解
Apr 02 Python
对Xpath 获取子标签下所有文本的方法详解
Jan 02 Python
Django获取该数据的上一条和下一条方法
Aug 12 Python
Python打包模块wheel的使用方法与将python包发布到PyPI的方法详解
Feb 12 Python
在pycharm中关掉ipython console/PyDev操作
Jun 09 Python
opencv 图像加法与图像融合的实现代码
Jul 08 Python
python统计mysql数据量变化并调用接口告警的示例代码
Sep 21 Python
Python解析m3u8拼接下载mp4视频文件的示例代码
Mar 03 Python
Pytorch 统计模型参数量的操作 param.numel()
May 13 Python
详解python 支持向量机(SVM)算法
Sep 18 #Python
python利用线程实现多任务
Sep 18 #Python
Pycharm的Available Packages为空的解决方法
Sep 18 #Python
Pycharm Available Package无法显示/安装包的问题Error Loading Package List解决
Sep 18 #Python
pycharm 代码自动补全的实现方法(图文)
Sep 18 #Python
PyCharm上安装Package的实现(以pandas为例)
Sep 18 #Python
Pycharm自带Git实现版本管理的方法步骤
Sep 18 #Python
You might like
PHP+DBM的同学录程序(3)
2006/10/09 PHP
PHP 批量删除数据的方法分析
2009/10/30 PHP
解析CI的AJAX分页 另类实现方法
2013/06/27 PHP
PHP经典设计模式之依赖注入定义与用法详解
2019/05/21 PHP
php判断/计算闰年的方法小结【三种方法】
2019/07/06 PHP
使用composer安装使用thinkphp6.0框架问题【视频教程】
2019/10/01 PHP
Confirmer JQuery确认对话框组件
2010/06/09 Javascript
关于this和self的使用说明
2010/08/01 Javascript
jquery的键盘事件修改代码
2011/02/24 Javascript
基于JavaScript实现继承机制之构造函数+原型链混合方式的使用详解
2013/05/07 Javascript
jquery中对于批量deferred的处理方法
2014/01/22 Javascript
动态加载js、css等文件跨iframe实现
2014/02/24 Javascript
javascript实现依次输入input自动定焦
2014/12/23 Javascript
JavaScript转换二进制编码为ASCII码的方法
2015/04/16 Javascript
基于JavaScript实现TAB标签效果
2016/01/12 Javascript
jquery+css3实现会动的小圆圈效果
2016/01/27 Javascript
浅谈javascript运算符——条件,逗号,赋值,()和void运算符
2016/07/15 Javascript
Node.js使用NodeMailer发送邮件实例代码
2017/03/06 Javascript
想用好React的你必须要知道的一些事情
2017/07/24 Javascript
JS中的回调函数实例浅析
2018/03/21 Javascript
JavaScript之解构赋值的理解
2019/01/30 Javascript
Js实现复选框的全选、全不选反选功能代码实例
2020/02/28 Javascript
vue路由跳转传递参数的方式总结
2020/05/10 Javascript
[02:04]完美世界城市挑战赛秋季赛报名开始 谁是solo路人王?
2019/10/10 DOTA
[01:03:18]DOTA2-DPC中国联赛 正赛 RNG vs Dynasty BO3 第一场 1月29日
2021/03/11 DOTA
Python3 queue队列模块详细介绍
2018/01/05 Python
python版本的仿windows计划任务工具
2018/04/30 Python
python实现截取屏幕保存文件,删除N天前截图的例子
2019/08/27 Python
Python实现Restful API的例子
2019/08/31 Python
python基于socket实现的UDP及TCP通讯功能示例
2019/11/01 Python
python多线程使用方法实例详解
2019/12/30 Python
tensorflow 获取所有variable或tensor的name示例
2020/01/04 Python
印度尼西亚综合购物网站:Lazada印尼
2016/09/07 全球购物
美国领先的在线邮轮旅游公司:CruiseDirect
2018/06/07 全球购物
班主任工作年限证明
2014/01/12 职场文书
小学生植树节活动总结
2014/07/04 职场文书