TensorFlow 模型载入方法汇总(小结)


Posted in Python onJune 19, 2018

一、TensorFlow常规模型加载方法

保存模型

tf.train.Saver()类,.save(sess, ckpt文件目录)方法

参数名称 功能说明 默认值
var_list Saver中存储变量集合 全局变量集合
reshape 加载时是否恢复变量形状 True
sharded 是否将变量轮循放在所有设备上 True
max_to_keep 保留最近检查点个数 5
restore_sequentially 是否按顺序恢复变量,模型较大时顺序恢复内存消耗小 True

var_list是字典形式{变量名字符串: 变量符号},相对应的restore也根据同样形式的字典将ckpt中的字符串对应的变量加载给程序中的符号。

如果Saver给定了字典作为加载方式,则按照字典来,如:saver = tf.train.Saver({"v/ExponentialMovingAverage":v}),否则每个变量寻找自己的name属性在ckpt中的对应值进行加载。

加载模型

当我们基于checkpoint文件(ckpt)加载参数时,实际上我们使用Saver.restore取代了initializer的初始化

TensorFlow 模型载入方法汇总(小结)

checkpoint文件会记录保存信息,通过它可以定位最新保存的模型:

ckpt = tf.train.get_checkpoint_state('./model/')
print(ckpt.model_checkpoint_path)

TensorFlow 模型载入方法汇总(小结) 

.meta文件保存了当前图结构

.index文件保存了当前参数名

.data文件保存了当前参数值

tf.train.import_meta_graph函数给出model.ckpt-n.meta的路径后会加载图结构,并返回saver对象

ckpt = tf.train.get_checkpoint_state('./model/')

tf.train.Saver函数会返回加载默认图的saver对象,saver对象初始化时可以指定变量映射方式,根据名字映射变量(『TensorFlow』滑动平均)

saver = tf.train.Saver({"v/ExponentialMovingAverage":v})

saver.restore函数给出model.ckpt-n的路径后会自动寻找参数名-值文件进行加载

saver.restore(sess,'./model/model.ckpt-0')
saver.restore(sess,ckpt.model_checkpoint_path)

1.不加载图结构,只加载参数

由于实际上我们参数保存的都是Variable变量的值,所以其他的参数值(例如batch_size)等,我们在restore时可能希望修改,但是图结构在train时一般就已经确定了,所以我们可以使用tf.Graph().as_default()新建一个默认图(建议使用上下文环境),利用这个新图修改和变量无关的参值大小,从而达到目的。

'''
使用原网络保存的模型加载到自己重新定义的图上
可以使用python变量名加载模型,也可以使用节点名
'''
import AlexNet as Net
import AlexNet_train as train
import random
import tensorflow as tf
 
IMAGE_PATH = './flower_photos/daisy/5673728_71b8cb57eb.jpg'
 
with tf.Graph().as_default() as g:
 
 x = tf.placeholder(tf.float32, [1, train.INPUT_SIZE[0], train.INPUT_SIZE[1], 3])
 y = Net.inference_1(x, N_CLASS=5, train=False)
 
 with tf.Session() as sess:
  # 程序前面得有 Variable 供 save or restore 才不报错
  # 否则会提示没有可保存的变量
  saver = tf.train.Saver()
 
  ckpt = tf.train.get_checkpoint_state('./model/')
  img_raw = tf.gfile.FastGFile(IMAGE_PATH, 'rb').read()
  img = sess.run(tf.expand_dims(tf.image.resize_images(
   tf.image.decode_jpeg(img_raw),[224,224],method=random.randint(0,3)),0))
 
  if ckpt and ckpt.model_checkpoint_path:
   print(ckpt.model_checkpoint_path)
   saver.restore(sess,'./model/model.ckpt-0')
   global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]
   res = sess.run(y, feed_dict={x: img})
   print(global_step,sess.run(tf.argmax(res,1)))

2.加载图结构和参数

'''
直接使用使用保存好的图
无需加载python定义的结构,直接使用节点名称加载模型
由于节点形状已经定下来了,所以有不便之处,placeholder定义batch后单张传会报错
现阶段不推荐使用,以后如果理解深入了可能会找到使用方法
'''
import AlexNet_train as train
import random
import tensorflow as tf
 
IMAGE_PATH = './flower_photos/daisy/5673728_71b8cb57eb.jpg'
 
 
ckpt = tf.train.get_checkpoint_state('./model/')       # 通过检查点文件锁定最新的模型
saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path +'.meta') # 载入图结构,保存在.meta文件中
 
with tf.Session() as sess:
 saver.restore(sess,ckpt.model_checkpoint_path)      # 载入参数,参数保存在两个文件中,不过restore会自己寻找
 
 img_raw = tf.gfile.FastGFile(IMAGE_PATH, 'rb').read()
 img = sess.run(tf.image.resize_images(
  tf.image.decode_jpeg(img_raw), train.INPUT_SIZE, method=random.randint(0, 3)))
 imgs = []
 for i in range(128):
  imgs.append(img)
 print(sess.run(tf.get_default_graph().get_tensor_by_name('fc3:0'),feed_dict={'Placeholder:0': imgs}))
 
 '''
 img = sess.run(tf.expand_dims(tf.image.resize_images(
  tf.image.decode_jpeg(img_raw), train.INPUT_SIZE, method=random.randint(0, 3)), 0))
 print(img)
 imgs = []
 for i in range(128):
  imgs.append(img)
 print(sess.run(tf.get_default_graph().get_tensor_by_name('conv1:0'),
     feed_dict={'Placeholder:0':img}))

注意,在所有两种方式中都可以通过调用节点名称使用节点输出张量,节点.name属性返回节点名称。

3.简化版本

# 连同图结构一同加载
ckpt = tf.train.get_checkpoint_state('./model/')
saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path +'.meta')
with tf.Session() as sess:
 saver.restore(sess,ckpt.model_checkpoint_path)
    
# 只加载数据,不加载图结构,可以在新图中改变batch_size等的值
# 不过需要注意,Saver对象实例化之前需要定义好新的图结构,否则会报错
saver = tf.train.Saver()
with tf.Session() as sess:
 ckpt = tf.train.get_checkpoint_state('./model/')
 saver.restore(sess,ckpt.model_checkpoint_path)

二、TensorFlow二进制模型加载方法

这种加载方法一般是对应网上各大公司已经训练好的网络模型进行修改的工作

# 新建空白图
self.graph = tf.Graph()
# 空白图列为默认图
with self.graph.as_default():
 # 二进制读取模型文件
 with tf.gfile.FastGFile(os.path.join(model_dir,model_name),'rb') as f:
  # 新建GraphDef文件,用于临时载入模型中的图
  graph_def = tf.GraphDef()
  # GraphDef加载模型中的图
  graph_def.ParseFromString(f.read())
  # 在空白图中加载GraphDef中的图
  tf.import_graph_def(graph_def,name='')
  # 在图中获取张量需要使用graph.get_tensor_by_name加张量名
  # 这里的张量可以直接用于session的run方法求值了
  # 补充一个基础知识,形如'conv1'是节点名称,而'conv1:0'是张量名称,表示节点的第一个输出张量
  self.input_tensor = self.graph.get_tensor_by_name(self.input_tensor_name)
  self.layer_tensors = [self.graph.get_tensor_by_name(name + ':0') for name in self.layer_operation_names]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现识别手写数字 python图像识别算法
Mar 23 Python
python实现多线程网页下载器
Apr 15 Python
对Python正则匹配IP、Url、Mail的方法详解
Dec 25 Python
Python3实现定时任务的四种方式
Jun 03 Python
PyQt5笔记之弹出窗口大全
Jun 20 Python
如何更优雅地写python代码
Jul 02 Python
使用Python的turtle模块画国旗
Sep 24 Python
python可视化实现KNN算法
Oct 16 Python
Python图像处理库PIL的ImageEnhance模块使用介绍
Feb 26 Python
Python API len函数操作过程解析
Mar 05 Python
Pandas的数据过滤实现
Jan 15 Python
Django框架中表单的用法
Jun 10 Python
python3爬虫之设计签名小程序
Jun 19 #Python
Python GUI Tkinter简单实现个性签名设计
Jun 19 #Python
TensorFlow数据输入的方法示例
Jun 19 #Python
深入分析python中整型不会溢出问题
Jun 18 #Python
Python登录注册验证功能实现
Jun 18 #Python
详解python3中zipfile模块用法
Jun 18 #Python
python爬取个性签名的方法
Jun 17 #Python
You might like
解析php中获取系统信息的方法
2013/06/25 PHP
ThinkPHP采用GET方式获取中文参数查询无结果的解决方法
2014/06/26 PHP
PHP实现的通过参数生成MYSQL语句类完整实例
2016/04/11 PHP
PHP简单实现DES加密解密的方法
2016/07/12 PHP
document.write的几点使用心得
2014/05/14 Javascript
Javascript 绘制 sin 曲线过程附图
2014/08/21 Javascript
Jquery网页内滑动缓冲导航的实现代码
2015/04/05 Javascript
javascript组合使用构造函数模式和原型模式实例
2015/06/04 Javascript
jquery正则表达式验证(手机号、身份证号、中文名称)
2015/12/31 Javascript
原生javascript实现图片无缝滚动效果
2016/02/12 Javascript
前端微信支付js代码
2016/07/25 Javascript
AngularJs Injecting Services Into Controllers详解
2016/09/02 Javascript
js窗口震动小程序分享
2016/11/28 Javascript
jQuery扩展+xml实现表单验证功能的方法
2016/12/25 Javascript
JS实现线性表的链式表示方法示例【经典数据结构】
2017/04/11 Javascript
js canvas实现擦除效果示例代码
2017/04/26 Javascript
Bootstrap框架建立树形菜单(Tree)的实例代码
2017/10/30 Javascript
详解jQuery如何实现模糊搜索
2019/05/10 jQuery
通过实例解析chrome如何在mac环境中安装vue-devtools插件
2020/07/10 Javascript
Python中装饰器的一个妙用
2015/02/08 Python
Python实现SMTP发送邮件详细教程
2021/03/02 Python
Python实现将Excel转换成xml的方法示例
2018/08/25 Python
利用python提取wav文件的mfcc方法
2019/01/09 Python
对Python实现累加函数的方法详解
2019/01/23 Python
对DataFrame数据中的重复行,利用groupby累加合并的方法详解
2019/01/30 Python
django 中使用DateTime常用的时间查询方式
2019/12/03 Python
python读取图片的几种方式及图像宽和高的存储顺序
2020/02/11 Python
matlab、python中矩阵的互相导入导出方式
2020/06/01 Python
python安装后的目录在哪里
2020/06/21 Python
html5 canvas fillRect坐标和大小的问题解决方法
2014/03/26 HTML / CSS
阿迪达斯越南官网:adidas越南
2020/07/19 全球购物
应届生找工作求职信
2014/06/24 职场文书
医学检验专业自荐信
2014/09/18 职场文书
党员三严三实心得体会
2014/10/13 职场文书
感恩教育主题班会
2015/08/12 职场文书
vue2的 router在使用过程中遇到的一些问题
2022/04/13 Vue.js