深入分析python中整型不会溢出问题


Posted in Python onJune 18, 2018

本次分析基于 CPython 解释器,python3.x版本

在python2时代,整型有 int 类型和 long 长整型,长整型不存在溢出问题,即可以存放任意大小的整数。在python3后,统一使用了长整型。这也是吸引科研人员的一部分了,适合大数据运算,不会溢出,也不会有其他语言那样还分短整型,整型,长整型...因此python就降低其他行业的学习门槛了。

那么,不溢出的整型实现上是否可行呢?

不溢出的整型的可行性

尽管在 C 语言中,整型所表示的大小是有范围的,但是 python 代码是保存到文本文件中的,也就是说,python代码中并不是一下子就转化成 C 语言的整型的,我们需要重新定义一种数据结构来表示和存储我们新的“整型”。

怎么来存储呢,既然我们要表示任意大小,那就得用动态的可变长的结构,显然,数组的形式能够胜任:

[longintrepr.h]
struct _longobject {
PyObject_VAR_HEAD
int *ob_digit;
};

长整型的保存形式

长整型在python内部是用一个 int 数组( ob_digit[n] )保存值的. 待存储的数值的低位信息放于低位下标, 高位信息放于高下标.比如要保存 123456789 较大的数字,但我们的int只能保存3位(假设):

ob_digit[0] = 789;
ob_digit[1] = 456;
ob_digit[2] = 123;

低索引保存的是地位,那么每个 int 元素保存多大的数合适?有同学会认为数组中每个int存放它的上限(2^31 - 1),这样表示大数时,数组长度更短,更省空间。但是,空间确实是更省了,但操作会代码麻烦,比方大数做乘积操作,由于元素之间存在乘法溢出问题,又得多考虑一种溢出的情况。

怎么来改进呢?在长整型的 ob_digit 中元素理论上可以保存的int类型有 32 位,但是我们只保存 15 位,这样元素之间的乘积就可以只用 int 类型保存即可, 结果做位移操作就能得到尾部和进位 carry 了,定义位移长度为 15:

#define PyLong_SHIFT 15
#define PyLong_BASE ((digit)1 << PyLong_SHIFT)
#define PyLong_MASK ((digit)(PyLong_BASE - 1))

PyLong_MASK 也就是 0b111111111111111 ,通过与它做位运算 与 的操作就能得到低位数。

有了这种存放方式,在内存空间允许的情况下,我们就可以存放任意大小的数字了。

长整型的运算

加法与乘法运算都可以使用我们小学的竖式计算方法,例如对于加法运算:

ob_digit[2] ob_digit[1] ob_digit[0]
加数a 23 934 543
加数b + 454 632
结果z 24 389 175

为方便理解,表格展示的是数组中每个元素保存的是 3 位十进制数,计算结果保存在变量z中,那么 z 的数组最多只要 size_a + 1 的空间(两个加数中数组较大的元素个数 + 1),因此对于加法运算,可以这样来处理:

[longobject.c]
static PyLongObject * x_add(PyLongObject *a, PyLongObject *b) {
  int size_a = len(a), size_b = len(b);
  PyLongObject *z;
  int i;
  int carry = 0; // 进位
  
  // 确保a是两个加数中较大的一个
  if (size_a < size_b) {
    // 交换两个加数
    swap(a, b);
    swap(&size_a, &size_b);
  }
  
  z = _PyLong_New(size_a + 1); // 申请一个能容纳size_a+1个元素的长整型对象
  for (i = 0; i < size_b; ++i) {
    carry += a->ob_digit[i] + b->ob_digit[i];
    z->ob_digit[i] = carry & PyLong_MASK;  // 掩码
    carry >>= PyLong_SHIFT;         // 移除低15位, 得到进位
  }
  for (; i < size_a; ++i) {          // 单独处理a中高位数字
    carry += a->ob_digit[i];
    z->ob_digit[i] = carry & PyLong_MASK;
    carry >>= PyLong_SHIFT;
  }
  z->ob_digit[i] = carry;
  return long_normalize(z);          // 整理元素个数
  
}

这部分的过程就是,先将两个加数中长度较长的作为第一个加数,再为用于保存结果的 z 申请空间,两个加数从数组从低位向高位计算,处理结果的进位,将结果的低 15 位赋值给 z 相应的位置。最后的 long_normalize(z) 是一个整理函数,因为我们 z 申请了 a_size + 1 的空间,但不意味着 z 会全部用到,因此这个函数会做一些调整,去掉多余的空间,数组长度调整至正确的数量,若不方便理解,附录将给出更利于理解的python代码。

竖式计算不是按个位十位来计算的吗,为什么这边用整个元素?

竖式计算方法适用与任何进制的数字,我们可以这样来理解,这是一个 32768 (2的15次方) 进制的,那么就可以把数组索引为 0 的元素当做是 “个位”,索引 1 的元素当做是 “十位”。

乘法运算

乘法运算一样可以用竖式的计算方式,两个乘数相乘,存放结果的 z 的元素个数为 size_a + size_b 即可:

操作 ob_digit[2] ob_digit[1] ob_digit[0]
乘数a 23 934 543
乘数b * 454 632
结果z 15 126 631 176
10 866 282 522
结果z 10 881 409 153 176

这里需要主意的是,当乘数 b 用索引 i 的元素进行计算时,结果 z 也是从 i 索引开始保存。先创建 z 并初始化为 0,这 z 上做累加操作,加法运算则可以利用前面的 x_add 函数:

// 为方便理解,会与cpython中源码部分稍有不同
static PyLongObject * x_mul(PyLongObject *a, PyLongObject *b)
{
  int size_a = len(a), size_b = len(b);
  PyLongObject *z = _PyLong_New(size_a + size_b);
  memset(z->ob_digit, 0, len(z) * sizeof(int)); // z 的数组清 0
  
  for (i = 0; i < size_b; ++i) {
    int carry = 0;     // 用一个int保存元素之间的乘法结果
    int f = b->ob_digit[i]; // 当前乘数b的元素
    
    // 创建一个临时变量,保存当前元素的计算结果,用于累加
    PyLongObject *temp = _PyLong_New(size_a + size_b);
    memset(temp->ob_digit, 0, len(temp) * sizeof(int)); // temp 的数组清 0
    
    int pz = i; // 存放到临时变量的低位
    
    for (j = 0; j < size_a; ++j) {
      carry = f * a[j] + carry;
      temp[pz] = carry & PyLong_MASK; // 取低15位
      carry = carry >> PyLong_SHIFT; // 保留进位
      pz ++;
    }
    if (carry){   // 处理进位
      carry += temp[pz];
      temp[pz] = carry & PyLong_MASK;
      carry = carry >> PyLong_SHIFT;
    }
    if (carry){
      temp[pz] += carry & PyLong_MASK;
    }
    temp = long_normalize(temp);
    z = x_add(z, temp);
  }
  
  return z
  
}

这大致就是乘法的处理过程,竖式乘法的复杂度是n^2,当数字非常大的时候(数组元素个数超过 70 个)时,python会选择性能更好,更高效的 Karatsuba multiplication 乘法运算方式,这种的算法复杂度是 3nlog3≈3n1.585,当然这种计算方法已经不是今天讨论的内容了。有兴趣的小伙伴可以去了解下。

总结

要想支持任意大小的整数运算,首先要找到适合存放整数的方式,本篇介绍了用 int 数组来存放,当然也可以用字符串来存储。找到合适的数据结构后,要重新定义整型的所有运算操作,本篇虽然只介绍了加法和乘法的处理过程,但其实还需要做很多的工作诸如减法,除法,位运算,取模,取余等。

python代码以文本形式存放,因此最后,还需要一个将字符串形式的数字转换成这种整型结构:

[longobject.c]
PyObject * PyLong_FromString(const char *str, char **pend, int base)
{
}

这部分不是本篇的重点,有兴趣的同学可以看看这个转换的过程。

参考:https://github.com/python/cpython/blob/master/Objects/longobject.c

附录

# 例子中的表格中,数组元素最多存放3位整数,因此这边设置1000
# 对应的取低位与取高位也就变成对 1000 取模和取余操作
PyLong_SHIFT = 1000
PyLong_MASK = 999

# 以15位长度的二进制
# PyLong_SHIFT = 15
# PyLong_MASK = (1 << 15) - 1

def long_normalize(num):
  """
  去掉多余的空间,调整数组的到正确的长度
  eg: [176, 631, 0, 0] ==> [176, 631]
  :param num:
  :return:
  """
  end = len(num)
  while end >= 1:
    if num[end - 1] != 0:
      break
    end -= 1

  num = num[:end]
  return num

def x_add(a, b):
  size_a = len(a)
  size_b = len(b)
  carry = 0

  # 确保 a 是两个加数较大的,较大指的是元素的个数
  if size_a < size_b:
    size_a, size_b = size_b, size_a
    a, b = b, a

  z = [0] * (size_a + 1)
  i = 0
  while i < size_b:
    carry += a[i] + b[i]
    z[i] = carry % PyLong_SHIFT
    carry //= PyLong_SHIFT
    i += 1

  while i < size_a:
    carry += a[i]
    z[i] = carry % PyLong_SHIFT
    carry //= PyLong_SHIFT
    i += 1
  z[i] = carry

  # 去掉多余的空间,数组长度调整至正确的数量
  z = long_normalize(z)

  return z


def x_mul(a, b):
  size_a = len(a)
  size_b = len(b)
  z = [0] * (size_a + size_b)

  for i in range(size_b):
    carry = 0
    f = b[i]

    # 创建一个临时变量
    temp = [0] * (size_a + size_b)
    pz = i
    for j in range(size_a):
      carry += f * a[j]
      temp[pz] = carry % PyLong_SHIFT
      carry //= PyLong_SHIFT
      pz += 1

    if carry:  # 处理进位
      carry += temp[pz]
      temp[pz] = carry % PyLong_SHIFT
      carry //= PyLong_SHIFT
      pz += 1

    if carry:
      temp[pz] += carry % PyLong_SHIFT
    temp = long_normalize(temp)
    z = x_add(z, temp)  # 累加

  return z


a = [543, 934, 23]
b = [632, 454]
print(x_add(a, b))
print(x_mul(a, b))
Python 相关文章推荐
python实现的守护进程(Daemon)用法实例
Jun 02 Python
Python2.7读取PDF文件的方法示例
Jul 13 Python
python 读取文件并把矩阵转成numpy的两种方法
Feb 12 Python
Python Django Vue 项目创建过程详解
Jul 29 Python
django 连接数据库 sqlite的例子
Aug 14 Python
Python3使用PySynth制作音乐的方法
Sep 09 Python
Django的CVB实例详解
Feb 10 Python
在python中logger setlevel没有生效的解决
Feb 21 Python
Python正则表达式学习小例子
Mar 03 Python
django 链接多个数据库 并使用原生sql实现
Mar 28 Python
Python求凸包及多边形面积教程
Apr 12 Python
分享7个 Python 实战项目练习
Mar 03 Python
Python登录注册验证功能实现
Jun 18 #Python
详解python3中zipfile模块用法
Jun 18 #Python
python爬取个性签名的方法
Jun 17 #Python
Python爬虫包BeautifulSoup学习实例(五)
Jun 17 #Python
Python爬虫包BeautifulSoup实例(三)
Jun 17 #Python
Python爬虫包BeautifulSoup异常处理(二)
Jun 17 #Python
Python爬虫包BeautifulSoup简介与安装(一)
Jun 17 #Python
You might like
PHP+DBM的同学录程序(2)
2006/10/09 PHP
定义php常量的详解
2013/06/09 PHP
PHP第三方登录―QQ登录实现方法
2017/02/06 PHP
js中几种去掉字串左右空格的方法
2006/12/25 Javascript
js实现input密码框提示信息的方法(附html5实现方法)
2016/01/14 Javascript
JQuery日历插件My97DatePicker日期范围限制
2016/01/20 Javascript
jQuery实现简易的输入框字数计数功能示例
2017/01/16 Javascript
JS仿Base.js实现的继承示例
2017/04/07 Javascript
js+html5实现半透明遮罩层弹框效果
2020/08/24 Javascript
JavaScript实现二叉树定义、遍历及查找的方法详解
2017/12/20 Javascript
Angular 容器部署的方法
2018/04/17 Javascript
微信小程序之多列表的显示和隐藏功能【附源码】
2018/08/06 Javascript
vue中组件的过渡动画及实现代码
2018/11/21 Javascript
jQuery实现购物车的总价计算和总价传值功能
2018/11/28 jQuery
超好用的jQuery分页插件jpaginate用法示例【附源码下载】
2018/12/06 jQuery
ES6 Generator函数的应用实例分析
2019/06/26 Javascript
JS实现盒子拖拽效果
2020/02/06 Javascript
JavaScript中数组去重的5种方法
2020/07/04 Javascript
在Vue 中实现循环渲染多个相同echarts图表
2020/07/20 Javascript
[01:02:07]Liquid vs Newbee 2019国际邀请赛小组赛 BO2 第一场 8.15
2019/08/16 DOTA
Python写的一个简单DNS服务器实例
2014/06/04 Python
由Python运算π的值深入Python中科学计算的实现
2015/04/17 Python
Python EOL while scanning string literal问题解决方法
2020/09/18 Python
Python自定义进程池实例分析【生产者、消费者模型问题】
2016/09/19 Python
Python 含参构造函数实例详解
2017/05/25 Python
Python中时间datetime的处理与转换用法总结
2019/02/18 Python
Python List cmp()知识点总结
2019/02/18 Python
Python文字截图识别OCR工具实例解析
2020/03/05 Python
把Anaconda中的环境导入到Pycharm里面的方法步骤
2020/10/30 Python
python工具快速为音视频自动生成字幕(使用说明)
2021/01/27 Python
python中zip()函数遍历多个列表方法
2021/02/18 Python
美国折扣香水网站:The Perfume Spot
2020/12/12 全球购物
枚举和一组预处理的#define有什么不同
2016/09/21 面试题
2014全国两会心得体会
2014/03/17 职场文书
2014年平安创建工作总结
2014/11/24 职场文书
Python可视化神器pyecharts之绘制地理图表练习
2022/07/07 Python