python可视化实现KNN算法


Posted in Python onOctober 16, 2019

简介

这里通过python的绘图工具Matplotlib包可视化实现机器学习中的KNN算法。

需要提前安装python的Numpy和Matplotlib包。

KNN?最近邻分类算法,算法逻辑比较简单,思路如下:

1.设一待分类数据iData,先计算其到已标记数据集中每个数据的距离,例如欧拉距离sqrt((x1-x2)^2+(y1-y2)^2);

2.然后根据离iData最近的k个数据的分类,出现次数最多的类别定为iData的分类。

KNN——最近邻算法python代码

代码实现:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

def KNNClassify(labelData,predData,k): #数据集包含分类属性
#labelData 是已经标记分类的数据集
#predData 未分类的待预测数据集
 labShape = labelData.shape
 for i in range(predData.shape[0]): #以predData的每行数据进行遍历
 iData = predData[i]
 iDset = np.tile(iData,(labShape[0],1)) #将iData重复,扩展成与labelData同形的矩阵
 #这里用欧拉距离sqrt((x1-x2)^2+(y1-y2)^2)
 diff = iDset[...,:-1] - labelData[...,:-1]
 diff = diff**2
 distance = np.sum(diff,axis=1)
 distance = distance ** 0.5 #开根号
 sortedIND = np.argsort(distance) #排序,以序号返回。
 classCount = { }
 for j in range(k): #计算距离最近的前k个标记数据的类别
 voteLabel = labelData[sortedIND[j],-1]
 classCount[voteLabel] = classCount.get(voteLabel,0)+1

 maxcls = max(classCount,key=classCount.get) #类别最多的,返回键名(类别名)
 predData[i][...,-1] = maxcls

 return predData

为了测试这个算法,需要现成的已分类数据集,由于手动输入很有限,数据量少,耗时。作为学习我们这里用代码模拟生成数据来进行测试。下面是生成已分类数据集的代码:

生成模拟数据的函数

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

#模拟生成分类数据
#目标是产生二维坐标中的几堆数据集,每堆为一个类
#函数逻辑:
#将x轴分段,每个段设一个中心的,所有的中心点用cores存储。
#设置每个数据中心点core的类别,由中心点在一定范围内随机产生数据,并将这些数据设为和core一样的类别
#所以每类的数据会简单的被X轴的每段大致分开

def makeKNNData(colnum,clsnum,nums,cores = []):
#colnum单个数据拥有特征数量(包括数据的分类);
# clsnum表示共有多少种分类;
# nums是一个元组,表示每个类别希望产生多少数据样本,如colnum为5,nums为[56, 69, 60, 92, 95];
#cores非必要参数,手动给出只是用于测试,cores提供每类的中心点,以中心点为依据产生该类数据。

 dataSet = np.zeros((sum(nums),colnum)) #初始化数据集,用于存放随后生成的所有数据
 n=0 #记录生成数据的下标
 step = 20/clsnum #假定X坐标轴只显示0~20的范围,step为X轴分段后的段长
 for j in range(clsnum): #循环生成各个类数据
 try:
 core = cores[j] #如果cores没有给出则,则出错,跳至except执行
 except IndexError :
 core = np.random.rand(1,3) #中心点为array([[x1,x2,c]]),c用于表示类别,这里产生的是1*3的二维数组
 core[0][0] =j*step + core[0][0]*step #将x1限制在各段中
 core[0][1] *=15 #将x2即y轴限制在0~15范围内
 core[0][2] = j #设置类别
 cores.append(core)
 for i in range(nums[j]): #按nums中指定了每类数据的数量,用循环生成。
 point= core[0][:2] + np.random.rand(1,2)*step -step/2 #产生点point(x,y),x以中心点在(core_x - step/2, core_x + step/2)范围随机波动,y同理。
 row = np.column_stack((point,core[0][2])) #加上类别成为一个数据
 dataSet[n] = row
 n +=1
 i +=1

 j +=1

 #print("print cores:",cores)
 return dataSet

有了数据集之后,我们可以用Matplotlib将数据可视化,以直观显示出来

数据可视化函数

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

#绘图展示数据,每类数据点以不同的颜色显示
def showFigure(dataSet,clsnum):
 fig = plt.figure()
 ax = fig.add_subplot(1,1,1) #界面只需显示一个视图
 ax.set_title('KNN separable data set') #视图名称,这里简单统一定这个名称吧
 plt.xlabel('X') #坐标轴名称
 plt.ylabel('Y')

 colors = ['r','g','b','y','k'] #定义显示的颜色b为blue,k为black
 for i in range(clsnum):
 idx = np.where(dataSet[:,2] == i) #查询每类的索引号
 ax.scatter(dataSet[idx,0], dataSet[idx,1], marker='o', color=colors[i%5], label=1, s=10) #在视图中的显示方式

 plt.legend(loc = 'upper right') #图例显示位置
 plt.show()


#测试一下
#需要结合模拟生成数据的函数
classnum = 5
nums = np.random.randint(50,100,classnum) #示例 array([56, 69, 60, 92, 95]),每个数字在50~100范围内
dataSet = makeKNNData(3,classnum,nums)
showFigure(dataSet,classnum)

生成的模拟数据展示结果如下:

python可视化实现KNN算法

完整代码

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

#模拟生成分类数据
#目标是产生二维坐标中的几堆数据集,每堆为一个类
#函数逻辑:
#将x轴分段,每个段设一个中心的,所有的中心点用cores存储。
#设置每个数据中心点core的类别,由中心点在一定范围内随机产生数据,并将这些数据设为和core一样的类别
#所以每类的数据会简单的被X轴的每段大致分开

def makeKNNData(colnum,clsnum,nums,cores = []):
#colnum单个数据拥有特征数量(包括数据的分类);
# clsnum表示共有多少种分类;
# nums是一个元组,表示每个类别希望产生多少数据样本;
#cores非必要参数,手动给出只是用于测试,cores提供每类的中心点,以中心点为依据产生该类数据。

 dataSet = np.zeros((sum(nums),colnum)) #初始化数据集,用于存放随后生成的所有数据
 n=0 #记录生成数据的下标
 step = 20/clsnum #假定X坐标轴只显示0~20的范围,step为X轴分段后的段长
 for j in range(clsnum): #循环生成各个类数据
 try:
 core = cores[j] #如果cores没有给出则,则出错,跳至except执行
 except IndexError :
 core = np.random.rand(1,3) #中心点为array([[x1,x2,c]]),c用于表示类别,这里产生的是1*3的二维数组
 core[0][0] =j*step + core[0][0]*step #将x1限制在各段中
 core[0][1] *=15 #将x2即y轴限制在0~15范围内
 core[0][2] = j #设置类别
 cores.append(core)
 for i in range(nums[j]): #按nums中指定了每类数据的数量,用循环生成。
 point= core[0][:2] + np.random.rand(1,2)*step -step/2 #产生点point(x,y),x以中心点在(core_x - step/2, core_x + step/2)范围随机波动,y同理。
 row = np.column_stack((point,core[0][2])) #加上类别成为一个数据
 dataSet[n] = row
 n +=1
 i +=1

 j +=1

 #print("print cores:",cores)
 return dataSet

#绘图展示数据,每类数据点以不同的颜色显示
def showFigure(dataSet,clsnum):
 fig = plt.figure()
 ax = fig.add_subplot(1,1,1) #界面只需显示一个视图
 ax.set_title('KNN separable data set') #视图名称,这里简单统一定这个名称吧
 plt.xlabel('X') #坐标轴名称
 plt.ylabel('Y')

 colors = ['r','g','b','y','k'] #定义显示的颜色b为blue,k为black
 for i in range(clsnum):
 idx = np.where(dataSet[:,2] == i) #查询每类的索引号
 ax.scatter(dataSet[idx,0], dataSet[idx,1], marker='o', color=colors[i%5], label=1, s=10) #在视图中的显示方式

 plt.legend(loc = 'upper right') #图例显示位置
 plt.show()


#分类算法:
#待分类数据iData,先计算其到已标记数据集中每个数据的距离
#然后根据离iData最近的k个数据的分类,出现次数最多的类别定为iData的分类。

def KNNClassify(labelData,predData,k): #数据集包含分类属性
#labelData 是已经标记分类的数据集
#predData 待预测数据集
 labShape = labelData.shape
 for i in range(predData.shape[0]): #以predData的每行数据进行遍历
 iData = predData[i]
 iDset = np.tile(iData,(labShape[0],1)) #将iData重复,扩展成与labelData同形的矩阵
 #这里用欧拉距离sqrt((x1-x2)^2+(y1-y2)^2)
 diff = iDset[...,:-1] - labelData[...,:-1]
 diff = diff**2
 distance = np.sum(diff,axis=1)
 distance = distance ** 0.5 #开根号
 sortedIND = np.argsort(distance) #排序,以序号返回。
 classCount = { }
 for j in range(k): #计算距离最近的前k个标记数据的类别
 voteLabel = labelData[sortedIND[j],-1]
 classCount[voteLabel] = classCount.get(voteLabel,0)+1

 maxcls = max(classCount,key=classCount.get) #类别最多的,返回键名(类别名)
 predData[i][...,-1] = maxcls

 return predData

#测试
labNums = np.random.randint(50,200,classnum)
predNums = np.random.randint(10,80,classnum)
#cores = [np.array([[ 0.08321641, 12.22596938, 0. ]]), np.array([[9.99891798, 4.24009775, 1. ]]), np.array([[14.98097374, 9.80120399, 2. ]])]

labelData = makeKNNData(3,classnum,labNums)
showFigure(labelData,classnum)
predData = makeKNNData(3,classnum,predNums) #这里为了方便,不在写产生待分类数据的代码,只需用之前的函数并忽略其类别就好。
predData[...,-1]=0
showFigure(predData,classnum)

k = 10
KNNData = KNNClassify(labelData,predData,k)
showFigure(KNNData,classnum)

运行程序,结果如下:

1.labelData的数据(已知分类的数据) 

 python可视化实现KNN算法

2.predData的数据(未标记的数据) 

 python可视化实现KNN算法

3KNNData的数据(用KNN算法进行分类后的数据)

python可视化实现KNN算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现的一个火车票转让信息采集器
Jul 09 Python
对于Python的Django框架部署的一些建议
Apr 09 Python
理解Python中的类与实例
Apr 27 Python
在MAC上搭建python数据分析开发环境
Jan 26 Python
Python基于回溯法子集树模板解决最佳作业调度问题示例
Sep 08 Python
python tkinter界面居中显示的方法
Oct 11 Python
Python使用pymongo库操作MongoDB数据库的方法实例
Feb 22 Python
Python爬虫实现爬取百度百科词条功能实例
Apr 05 Python
简单介绍django提供的加密算法
Dec 18 Python
简单了解python字符串前面加r,u的含义
Dec 26 Python
基于keras输出中间层结果的2种实现方式
Jan 24 Python
Python爬虫如何破解JS加密的Cookie
Nov 19 Python
python实现KNN分类算法
Oct 16 #Python
python子线程退出及线程退出控制的代码
Oct 16 #Python
python Pillow图像处理方法汇总
Oct 16 #Python
win10环境下配置vscode python开发环境的教程详解
Oct 16 #Python
500行代码使用python写个微信小游戏飞机大战游戏
Oct 16 #Python
python提取xml里面的链接源码详解
Oct 15 #Python
python yield关键词案例测试
Oct 15 #Python
You might like
修改php.ini以达到屏蔽错误信息并记录日志
2013/06/16 PHP
php遍历类中包含的所有元素的方法
2015/05/12 PHP
PHP使用ajax的post方式下载excel文件简单示例
2019/08/06 PHP
讲两件事:1.this指针的用法小探. 2.ie的attachEvent和firefox的addEventListener在事件处理上的区别
2007/04/12 Javascript
Javascript UrlDecode函数代码
2010/01/09 Javascript
JQuery上传插件Uploadify使用详解及错误处理
2010/04/27 Javascript
js中reverse函数的用法详解
2013/12/26 Javascript
jquery+ajax验证不通过也提交表单问题处理
2014/12/12 Javascript
jquery实现表单验证简单实例演示
2015/11/23 Javascript
HTML5游戏引擎LTweenLite实现的超帅动画效果(附demo源码下载)
2016/01/26 Javascript
jQuery模仿单选按钮选中效果
2016/06/24 Javascript
Extjs让combobox写起来简洁又漂亮
2017/01/05 Javascript
Bootstrap框架安装使用详解
2017/01/21 Javascript
详解express与koa中间件模式对比
2017/08/07 Javascript
prototype.js简单实现ajax功能示例
2017/10/18 Javascript
详谈DOM简介及节点、属性、查找节点的方法
2017/11/16 Javascript
小程序获取周围IBeacon设备的方法
2018/10/31 Javascript
vue.js 2.*项目环境搭建、运行、打包发布的详细步骤
2019/05/01 Javascript
jQuery实现弹幕特效
2019/11/29 jQuery
[04:09]2018年度DOTA2社区贡献奖-完美盛典
2018/12/16 DOTA
从零学Python之入门(四)运算
2014/05/27 Python
研究Python的ORM框架中的SQLAlchemy库的映射关系
2015/04/25 Python
python+requests+unittest API接口测试实例(详解)
2017/06/10 Python
python删除不需要的python文件方法
2018/04/24 Python
详解Python3中的迭代器和生成器及其区别
2018/10/09 Python
Python API 自动化实战详解(纯代码)
2019/06/11 Python
Python API len函数操作过程解析
2020/03/05 Python
Python基于pandas爬取网页表格数据
2020/05/11 Python
Python如何给函数库增加日志功能
2020/08/04 Python
CSS3教程(5):网页背景图片
2009/04/02 HTML / CSS
财务助理岗位职责
2013/11/10 职场文书
技校毕业生个人学习的自我评价
2014/02/21 职场文书
《这儿真好》教学反思
2014/02/22 职场文书
党员违纪检讨书怎么写
2014/11/01 职场文书
人事行政主管岗位职责
2015/04/09 职场文书
放假通知怎么写
2015/08/18 职场文书