python可视化实现KNN算法


Posted in Python onOctober 16, 2019

简介

这里通过python的绘图工具Matplotlib包可视化实现机器学习中的KNN算法。

需要提前安装python的Numpy和Matplotlib包。

KNN?最近邻分类算法,算法逻辑比较简单,思路如下:

1.设一待分类数据iData,先计算其到已标记数据集中每个数据的距离,例如欧拉距离sqrt((x1-x2)^2+(y1-y2)^2);

2.然后根据离iData最近的k个数据的分类,出现次数最多的类别定为iData的分类。

KNN——最近邻算法python代码

代码实现:

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

def KNNClassify(labelData,predData,k): #数据集包含分类属性
#labelData 是已经标记分类的数据集
#predData 未分类的待预测数据集
 labShape = labelData.shape
 for i in range(predData.shape[0]): #以predData的每行数据进行遍历
 iData = predData[i]
 iDset = np.tile(iData,(labShape[0],1)) #将iData重复,扩展成与labelData同形的矩阵
 #这里用欧拉距离sqrt((x1-x2)^2+(y1-y2)^2)
 diff = iDset[...,:-1] - labelData[...,:-1]
 diff = diff**2
 distance = np.sum(diff,axis=1)
 distance = distance ** 0.5 #开根号
 sortedIND = np.argsort(distance) #排序,以序号返回。
 classCount = { }
 for j in range(k): #计算距离最近的前k个标记数据的类别
 voteLabel = labelData[sortedIND[j],-1]
 classCount[voteLabel] = classCount.get(voteLabel,0)+1

 maxcls = max(classCount,key=classCount.get) #类别最多的,返回键名(类别名)
 predData[i][...,-1] = maxcls

 return predData

为了测试这个算法,需要现成的已分类数据集,由于手动输入很有限,数据量少,耗时。作为学习我们这里用代码模拟生成数据来进行测试。下面是生成已分类数据集的代码:

生成模拟数据的函数

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

#模拟生成分类数据
#目标是产生二维坐标中的几堆数据集,每堆为一个类
#函数逻辑:
#将x轴分段,每个段设一个中心的,所有的中心点用cores存储。
#设置每个数据中心点core的类别,由中心点在一定范围内随机产生数据,并将这些数据设为和core一样的类别
#所以每类的数据会简单的被X轴的每段大致分开

def makeKNNData(colnum,clsnum,nums,cores = []):
#colnum单个数据拥有特征数量(包括数据的分类);
# clsnum表示共有多少种分类;
# nums是一个元组,表示每个类别希望产生多少数据样本,如colnum为5,nums为[56, 69, 60, 92, 95];
#cores非必要参数,手动给出只是用于测试,cores提供每类的中心点,以中心点为依据产生该类数据。

 dataSet = np.zeros((sum(nums),colnum)) #初始化数据集,用于存放随后生成的所有数据
 n=0 #记录生成数据的下标
 step = 20/clsnum #假定X坐标轴只显示0~20的范围,step为X轴分段后的段长
 for j in range(clsnum): #循环生成各个类数据
 try:
 core = cores[j] #如果cores没有给出则,则出错,跳至except执行
 except IndexError :
 core = np.random.rand(1,3) #中心点为array([[x1,x2,c]]),c用于表示类别,这里产生的是1*3的二维数组
 core[0][0] =j*step + core[0][0]*step #将x1限制在各段中
 core[0][1] *=15 #将x2即y轴限制在0~15范围内
 core[0][2] = j #设置类别
 cores.append(core)
 for i in range(nums[j]): #按nums中指定了每类数据的数量,用循环生成。
 point= core[0][:2] + np.random.rand(1,2)*step -step/2 #产生点point(x,y),x以中心点在(core_x - step/2, core_x + step/2)范围随机波动,y同理。
 row = np.column_stack((point,core[0][2])) #加上类别成为一个数据
 dataSet[n] = row
 n +=1
 i +=1

 j +=1

 #print("print cores:",cores)
 return dataSet

有了数据集之后,我们可以用Matplotlib将数据可视化,以直观显示出来

数据可视化函数

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

#绘图展示数据,每类数据点以不同的颜色显示
def showFigure(dataSet,clsnum):
 fig = plt.figure()
 ax = fig.add_subplot(1,1,1) #界面只需显示一个视图
 ax.set_title('KNN separable data set') #视图名称,这里简单统一定这个名称吧
 plt.xlabel('X') #坐标轴名称
 plt.ylabel('Y')

 colors = ['r','g','b','y','k'] #定义显示的颜色b为blue,k为black
 for i in range(clsnum):
 idx = np.where(dataSet[:,2] == i) #查询每类的索引号
 ax.scatter(dataSet[idx,0], dataSet[idx,1], marker='o', color=colors[i%5], label=1, s=10) #在视图中的显示方式

 plt.legend(loc = 'upper right') #图例显示位置
 plt.show()


#测试一下
#需要结合模拟生成数据的函数
classnum = 5
nums = np.random.randint(50,100,classnum) #示例 array([56, 69, 60, 92, 95]),每个数字在50~100范围内
dataSet = makeKNNData(3,classnum,nums)
showFigure(dataSet,classnum)

生成的模拟数据展示结果如下:

python可视化实现KNN算法

完整代码

import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

#模拟生成分类数据
#目标是产生二维坐标中的几堆数据集,每堆为一个类
#函数逻辑:
#将x轴分段,每个段设一个中心的,所有的中心点用cores存储。
#设置每个数据中心点core的类别,由中心点在一定范围内随机产生数据,并将这些数据设为和core一样的类别
#所以每类的数据会简单的被X轴的每段大致分开

def makeKNNData(colnum,clsnum,nums,cores = []):
#colnum单个数据拥有特征数量(包括数据的分类);
# clsnum表示共有多少种分类;
# nums是一个元组,表示每个类别希望产生多少数据样本;
#cores非必要参数,手动给出只是用于测试,cores提供每类的中心点,以中心点为依据产生该类数据。

 dataSet = np.zeros((sum(nums),colnum)) #初始化数据集,用于存放随后生成的所有数据
 n=0 #记录生成数据的下标
 step = 20/clsnum #假定X坐标轴只显示0~20的范围,step为X轴分段后的段长
 for j in range(clsnum): #循环生成各个类数据
 try:
 core = cores[j] #如果cores没有给出则,则出错,跳至except执行
 except IndexError :
 core = np.random.rand(1,3) #中心点为array([[x1,x2,c]]),c用于表示类别,这里产生的是1*3的二维数组
 core[0][0] =j*step + core[0][0]*step #将x1限制在各段中
 core[0][1] *=15 #将x2即y轴限制在0~15范围内
 core[0][2] = j #设置类别
 cores.append(core)
 for i in range(nums[j]): #按nums中指定了每类数据的数量,用循环生成。
 point= core[0][:2] + np.random.rand(1,2)*step -step/2 #产生点point(x,y),x以中心点在(core_x - step/2, core_x + step/2)范围随机波动,y同理。
 row = np.column_stack((point,core[0][2])) #加上类别成为一个数据
 dataSet[n] = row
 n +=1
 i +=1

 j +=1

 #print("print cores:",cores)
 return dataSet

#绘图展示数据,每类数据点以不同的颜色显示
def showFigure(dataSet,clsnum):
 fig = plt.figure()
 ax = fig.add_subplot(1,1,1) #界面只需显示一个视图
 ax.set_title('KNN separable data set') #视图名称,这里简单统一定这个名称吧
 plt.xlabel('X') #坐标轴名称
 plt.ylabel('Y')

 colors = ['r','g','b','y','k'] #定义显示的颜色b为blue,k为black
 for i in range(clsnum):
 idx = np.where(dataSet[:,2] == i) #查询每类的索引号
 ax.scatter(dataSet[idx,0], dataSet[idx,1], marker='o', color=colors[i%5], label=1, s=10) #在视图中的显示方式

 plt.legend(loc = 'upper right') #图例显示位置
 plt.show()


#分类算法:
#待分类数据iData,先计算其到已标记数据集中每个数据的距离
#然后根据离iData最近的k个数据的分类,出现次数最多的类别定为iData的分类。

def KNNClassify(labelData,predData,k): #数据集包含分类属性
#labelData 是已经标记分类的数据集
#predData 待预测数据集
 labShape = labelData.shape
 for i in range(predData.shape[0]): #以predData的每行数据进行遍历
 iData = predData[i]
 iDset = np.tile(iData,(labShape[0],1)) #将iData重复,扩展成与labelData同形的矩阵
 #这里用欧拉距离sqrt((x1-x2)^2+(y1-y2)^2)
 diff = iDset[...,:-1] - labelData[...,:-1]
 diff = diff**2
 distance = np.sum(diff,axis=1)
 distance = distance ** 0.5 #开根号
 sortedIND = np.argsort(distance) #排序,以序号返回。
 classCount = { }
 for j in range(k): #计算距离最近的前k个标记数据的类别
 voteLabel = labelData[sortedIND[j],-1]
 classCount[voteLabel] = classCount.get(voteLabel,0)+1

 maxcls = max(classCount,key=classCount.get) #类别最多的,返回键名(类别名)
 predData[i][...,-1] = maxcls

 return predData

#测试
labNums = np.random.randint(50,200,classnum)
predNums = np.random.randint(10,80,classnum)
#cores = [np.array([[ 0.08321641, 12.22596938, 0. ]]), np.array([[9.99891798, 4.24009775, 1. ]]), np.array([[14.98097374, 9.80120399, 2. ]])]

labelData = makeKNNData(3,classnum,labNums)
showFigure(labelData,classnum)
predData = makeKNNData(3,classnum,predNums) #这里为了方便,不在写产生待分类数据的代码,只需用之前的函数并忽略其类别就好。
predData[...,-1]=0
showFigure(predData,classnum)

k = 10
KNNData = KNNClassify(labelData,predData,k)
showFigure(KNNData,classnum)

运行程序,结果如下:

1.labelData的数据(已知分类的数据) 

 python可视化实现KNN算法

2.predData的数据(未标记的数据) 

 python可视化实现KNN算法

3KNNData的数据(用KNN算法进行分类后的数据)

python可视化实现KNN算法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
跟老齐学Python之list和str比较
Sep 20 Python
windows下python安装paramiko模块和pycrypto模块(简单三步)
Jul 06 Python
python删除不需要的python文件方法
Apr 24 Python
python中map的基本用法示例
Sep 10 Python
对python读写文件去重、RE、set的使用详解
Dec 11 Python
Python自定义一个类实现字典dict功能的方法
Jan 19 Python
python 多线程串行和并行的实例
Feb 22 Python
python日志logging模块使用方法分析
May 23 Python
python点击鼠标获取坐标(Graphics)
Aug 10 Python
python GUI库图形界面开发之PyQt5中QWebEngineView内嵌网页与Python的数据交互传参详细方法实例
Feb 26 Python
Python工程师必考的6个经典面试题
Jun 28 Python
如何在windows下安装配置python工具Ulipad
Oct 27 Python
python实现KNN分类算法
Oct 16 #Python
python子线程退出及线程退出控制的代码
Oct 16 #Python
python Pillow图像处理方法汇总
Oct 16 #Python
win10环境下配置vscode python开发环境的教程详解
Oct 16 #Python
500行代码使用python写个微信小游戏飞机大战游戏
Oct 16 #Python
python提取xml里面的链接源码详解
Oct 15 #Python
python yield关键词案例测试
Oct 15 #Python
You might like
PHP Smarty生成EXCEL文档的代码
2008/08/23 PHP
CodeIgniter使用phpcms模板引擎
2013/11/12 PHP
PHP图像处理类库及演示分享
2015/05/17 PHP
PHP数学运算函数大汇总(经典值得收藏)
2016/04/01 PHP
php中的单引号、双引号和转义字符详解
2017/02/16 PHP
Thinkphp结合AJAX长轮询实现PC与APP推送详解
2017/07/31 PHP
使用javascipt---实现二分查找法
2013/04/10 Javascript
js编写trim()函数及正则表达式的运用
2013/10/24 Javascript
jQuery jcrop插件截图使用方法
2013/11/20 Javascript
js AppendChild与insertBefore用法详细对比
2013/12/16 Javascript
用javascript替换URL中的参数值示例代码
2014/01/27 Javascript
利用jquery动画特效和css打造的侧边弹出垂直导航
2014/04/04 Javascript
js数组依据下标删除元素
2015/04/14 Javascript
javascript实现设置、获取和删除Cookie的方法
2015/06/01 Javascript
基于JS代码实现当鼠标悬停表格上显示这一格的全部内容
2016/06/12 Javascript
JavaScript作用域示例详解
2016/07/07 Javascript
微信小程序 slider 详解及实例代码
2017/01/10 Javascript
ES6中的箭头函数实例详解
2017/04/06 Javascript
详解如何在微信小程序中愉快地使用sass
2018/07/30 Javascript
Vue瀑布流插件的使用示例
2018/09/19 Javascript
微信小程序与后台PHP交互的方法实例分析
2018/12/10 Javascript
微信小程序学习总结(三)条件、模板、文件引用实例分析
2020/06/04 Javascript
echarts柱状图背景重叠组合而非并列的实现代码
2020/12/10 Javascript
[02:32]“虐狗”镜头慎点 2016国际邀请赛中国区预选赛现场玩家采访
2016/06/28 DOTA
Python入门篇之面向对象
2014/10/20 Python
Python中正则表达式详解
2017/05/17 Python
python实现zabbix发送短信脚本
2018/09/17 Python
python实现随机漫步方法和原理
2019/06/10 Python
Pytorch 的损失函数Loss function使用详解
2020/01/02 Python
python实现猜拳游戏
2020/03/04 Python
Python如何向SQLServer存储二进制图片
2020/06/08 Python
萨克斯第五大道的折扣店:Saks Fifth Avenue OFF 5TH
2016/08/25 全球购物
.net面试题
2015/12/22 面试题
触摸春天教学反思
2014/02/03 职场文书
2014年实习期工作总结
2014/11/27 职场文书
送给火锅店的创意营销方案!
2019/07/08 职场文书