在pytorch中为Module和Tensor指定GPU的例子


Posted in Python onAugust 19, 2019

pytorch指定GPU

在用pytorch写CNN的时候,发现一运行程序就卡住,然后cpu占用率100%,nvidia-smi 查看显卡发现并没有使用GPU。所以考虑将模型和输入数据及标签指定到gpu上。

pytorch中的Tensor和Module可以指定gpu运行,并且可以指定在哪一块gpu上运行,方法非常简单,就是直接调用Tensor类和Module类中的 .cuda() 方法。

import torch
from PIL import Image
import torch.nn as nn
import numpy as np
from torch.autograd import Variable

# 先看看有没有显卡
torch.cuda.is_available()
Out[16]: True
# 嗯,有显卡,可以指定,先生成一个Tensor
a = torch.Tensor(3,5)
a
Out[13]: 
.00000e-05 *
 0.0000 0.0000 2.0419 0.0000 2.0420
 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0132 0.0000 0.0131 0.0000 0.0000
[torch.FloatTensor of size 3x5]
a.cuda()
Out[14]: 
.00000e-05 *
 0.0000 0.0000 2.0419 0.0000 2.0420
 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0132 0.0000 0.0131 0.0000 0.0000
[torch.cuda.FloatTensor of size 3x5 (GPU 0)]
# 可以看到上面显示了(GPU 0),也就是说这个Tensor是在第一个GPU上的
a.cuda(1)
Traceback (most recent call last):

 File "<ipython-input-15-ef42531f63ca>", line 1, in <module>
  a.cuda(1)

 File "/home/chia/anaconda2/lib/python2.7/site-packages/torch/_utils.py", line 57, in _cuda
  with torch.cuda.device(device):

 File "/home/chia/anaconda2/lib/python2.7/site-packages/torch/cuda/__init__.py", line 127, in __enter__
  torch._C._cuda_setDevice(self.idx)

RuntimeError: cuda runtime error (10) : invalid device ordinal at torch/csrc/cuda/Module.cpp:84
# 这个报错了,因为只有一块GPU,所以指定cuda(1)无效。

同样滴,Variable变量和Module类型的模型也可以指定放在哪块GPU上

v = Variable(a)

v
Out[18]: 
Variable containing:
.00000e-05 *
 0.0000 0.0000 2.0419 0.0000 2.0420
 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0132 0.0000 0.0131 0.0000 0.0000
[torch.FloatTensor of size 3x5]

v.cuda(0)
Out[19]: 
Variable containing:
.00000e-05 *
 0.0000 0.0000 2.0419 0.0000 2.0420
 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0132 0.0000 0.0131 0.0000 0.0000
[torch.cuda.FloatTensor of size 3x5 (GPU 0)]

model = DenoiseCNN()

model
Out[22]: 
DenoiseCNN (
 (hid_layer): Sequential (
  (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
  (2): LeakyReLU (0.2)
 )
 (first_layer): Sequential (
  (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): LeakyReLU (0.2)
 )
 (last_layer): Sequential (
  (0): Conv2d(32, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 )
)

model.cuda(0)
Out[23]: 
DenoiseCNN (
 (hid_layer): Sequential (
  (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
  (2): LeakyReLU (0.2)
 )
 (first_layer): Sequential (
  (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): LeakyReLU (0.2)
 )
 (last_layer): Sequential (
  (0): Conv2d(32, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 )
)

这样看不出来Module的变化,考虑看一下Module中的参数在哪里

for i, para in enumerate(model.parameters()):
  if i < 2:
    print para

Parameter containing:
(0 ,0 ,.,.) = 
 -3.1792e-02 -4.6396e-02 -4.3472e-02
 3.4903e-02 1.8558e-02 5.3955e-03
 2.4986e-02 3.8061e-02 -1.6658e-02

(0 ,1 ,.,.) = 
 -3.5041e-02 -3.6286e-02 -3.0819e-02
 1.0683e-02 9.0773e-03 -2.5379e-02
 2.9508e-03 2.8774e-02 7.4632e-04

(0 ,2 ,.,.) = 
 -4.6986e-02 -5.1183e-02 8.4346e-04
 -6.6864e-03 -2.8816e-02 1.2566e-02
 2.1682e-02 2.5485e-02 -7.2600e-03
  ...

(0 ,29,.,.) = 
 -5.5289e-03 -2.6012e-02 -2.7771e-02
 2.7528e-02 3.0460e-02 -1.2829e-02
 7.3387e-03 5.2633e-02 5.0601e-02

(0 ,30,.,.) = 
 -3.5881e-02 9.7000e-03 -3.3692e-02
 1.6257e-03 -4.0113e-02 3.5300e-02
 -2.1399e-03 3.0934e-02 -2.7513e-02

(0 ,31,.,.) = 
 -2.7492e-02 2.5803e-02 5.2171e-02
 -2.4082e-02 3.1887e-02 1.1292e-02
 5.8893e-02 -3.5452e-02 -1.2115e-02
   ⋮ 

(1 ,0 ,.,.) = 
 5.0664e-02 -4.1085e-02 2.9089e-02
 2.1555e-02 5.7176e-02 -7.5013e-03
 3.5075e-02 -1.6610e-02 3.4904e-02

(1 ,1 ,.,.) = 
 4.6716e-02 -1.2552e-02 -3.8132e-02
 -2.9573e-02 -3.5008e-02 -4.2891e-02
 9.5230e-03 -4.8599e-02 2.5357e-02

(1 ,2 ,.,.) = 
 -1.7859e-02 1.3442e-02 1.9493e-02
 1.8434e-02 1.4884e-03 8.6479e-03
 -7.1610e-03 3.5724e-02 6.2249e-03
  ...

(1 ,29,.,.) = 
 -3.3194e-02 1.6803e-05 2.3405e-02
 -5.2223e-02 6.5680e-03 -1.8427e-02
 -1.4476e-02 -1.5434e-02 -2.3108e-02

(1 ,30,.,.) = 
 2.3479e-02 1.2840e-02 4.5949e-02
 4.4833e-02 4.9272e-02 -3.7634e-02
 4.2787e-02 8.5841e-04 1.2332e-02

(1 ,31,.,.) = 
 4.1723e-02 -2.5295e-02 1.1326e-02
 -5.1707e-02 5.3201e-02 4.8928e-02
 -1.6735e-02 -8.7450e-03 -4.9530e-02
   ⋮ 

(2 ,0 ,.,.) = 
 -3.1728e-02 -3.9757e-02 6.5561e-03
 -1.7731e-02 2.8615e-02 2.7457e-02
 -2.1817e-03 -4.2405e-02 -3.6126e-03

(2 ,1 ,.,.) = 
 3.2434e-02 -1.1574e-03 1.3353e-02
 -2.3069e-02 4.9532e-02 1.6768e-02
 -3.5563e-02 -4.4264e-02 -2.0571e-02

(2 ,2 ,.,.) = 
 7.4980e-03 -5.7412e-03 -3.0638e-03
 1.1812e-02 -1.7851e-02 4.2195e-04
 3.9753e-02 3.8771e-02 4.3166e-03
  ...

(2 ,29,.,.) = 
 -5.0798e-02 4.3651e-02 -2.3798e-02
 -6.0957e-03 -5.6953e-02 1.2583e-02
 -2.3450e-02 -4.7136e-02 5.2458e-02

(2 ,30,.,.) = 
 1.5088e-02 2.6097e-02 4.9392e-03
 -9.0372e-03 -5.3276e-02 -1.7824e-02
 3.2060e-03 5.8820e-02 1.3459e-02

(2 ,31,.,.) = 
 -5.2557e-03 -4.9638e-02 -7.5522e-03
 2.8668e-02 -3.9617e-02 -1.8111e-02
 -4.0412e-02 1.1320e-02 -2.4005e-02

   ⋮ 

(29,0 ,.,.) = 
 -1.4393e-02 2.1343e-02 5.1940e-02
 5.7449e-02 3.1327e-02 -1.0721e-02
 -1.0184e-02 -6.2289e-03 3.9823e-02

(29,1 ,.,.) = 
 -4.2240e-03 5.8135e-02 5.2816e-02
 -4.9888e-02 3.3972e-02 4.3127e-02
 -2.3355e-02 -5.5401e-02 3.4952e-02

(29,2 ,.,.) = 
 4.0336e-02 7.6532e-03 5.4083e-02
 -2.7456e-02 3.9090e-02 4.4008e-02
 -2.0424e-02 -5.8922e-02 -4.4759e-03
  ...

(29,29,.,.) = 
 8.8037e-03 1.0347e-02 -2.2285e-02
 -1.0538e-02 -3.2981e-02 2.2300e-02
 -2.7337e-02 5.3113e-02 5.4608e-02

(29,30,.,.) = 
 3.1429e-02 5.2024e-03 -1.3882e-02
 -3.3123e-02 -2.7633e-03 1.9007e-02
 -2.9795e-02 3.7551e-02 5.6486e-02

(29,31,.,.) = 
 2.0140e-02 1.8530e-02 7.4208e-03
 2.7311e-02 5.3581e-02 -2.5553e-02
 -1.7285e-02 1.8722e-02 4.0104e-02
   ⋮ 

(30,0 ,.,.) = 
 5.2750e-02 4.5757e-03 -5.3894e-02
 -3.9297e-02 3.2918e-02 2.3571e-02
 -1.1806e-02 1.6091e-02 3.3755e-04

(30,1 ,.,.) = 
 4.2858e-02 -5.2211e-02 -3.5660e-02
 1.4807e-02 -5.8873e-02 5.5535e-02
 4.9854e-02 2.2946e-02 4.0968e-03

(30,2 ,.,.) = 
 3.0378e-02 2.1315e-02 9.1700e-03
 3.6277e-02 -4.0734e-02 4.8175e-02
 3.0748e-02 -2.7425e-02 -1.7741e-02
  ...

(30,29,.,.) = 
 3.1883e-02 2.5012e-02 2.8504e-02
 -1.3538e-02 3.5570e-02 -2.0261e-02
 -1.5959e-02 3.3373e-02 8.3261e-03

(30,30,.,.) = 
 2.7152e-02 -5.6752e-02 2.2697e-02
 1.2614e-02 -2.4174e-02 -2.5058e-02
 1.8737e-02 -1.3581e-03 -3.7116e-02

(30,31,.,.) = 
 -4.3278e-02 2.5873e-02 -1.6677e-02
 3.9483e-02 5.7898e-02 -4.1450e-02
 -5.8218e-02 -3.0660e-02 -4.2161e-02
   ⋮ 

(31,0 ,.,.) = 
 1.3370e-02 -1.4191e-02 -2.2524e-02
 2.1772e-02 -2.2440e-02 -3.0512e-03
 3.4139e-02 -1.9043e-02 1.1289e-02

(31,1 ,.,.) = 
 -5.1293e-02 -5.2802e-02 1.7022e-02
 5.1031e-02 -1.0345e-02 -4.4780e-02
 -4.9422e-02 4.7709e-02 -2.1215e-02

(31,2 ,.,.) = 
 2.2289e-02 -2.1746e-02 -5.3192e-02
 2.6651e-02 -1.6531e-02 2.2640e-02
 1.4012e-02 1.1405e-02 -1.4809e-02
  ...

(31,29,.,.) = 
 2.5505e-03 2.4052e-02 -4.7662e-02
 1.6068e-02 -4.2278e-02 -2.4670e-02
 -1.4684e-02 -3.8222e-02 -5.0006e-02

(31,30,.,.) = 
 -4.9350e-02 4.7564e-02 -7.3479e-03
 2.6490e-02 -1.1745e-02 3.4324e-02
 4.2650e-02 -5.4633e-02 9.4581e-03

(31,31,.,.) = 
 -3.2695e-02 -2.8899e-02 1.5543e-02
 -5.3662e-02 5.0727e-02 3.5950e-02
 4.6130e-02 -4.4754e-02 -4.5647e-02
[torch.cuda.FloatTensor of size 32x32x3x3 (GPU 0)]

Parameter containing:
.00000e-02 *
 -1.2723
 -5.2970
 -3.4638
 -1.5302
 0.7641
 5.7516
 -4.8427
 -0.7230
 4.5940
 -4.1709
 4.8093
 -4.7249
 -2.2756
 -5.5165
 5.1259
 -2.4693
 1.8527
 -0.4210
 -2.0518
 -3.8124
 -4.6195
 -4.3019
 -0.8631
 -0.4400
 5.4604
 -5.5597
 1.5557
 4.2336
 3.9482
 -1.4457
 2.6124
 -1.8218
[torch.cuda.FloatTensor of size 32 (GPU 0)]

可以看出,模型的参变量是放在GPU上的。

通过指定了gpu后,就可以使用gpu来训练模型了~美滋滋

以上这篇在pytorch中为Module和Tensor指定GPU的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python字符串替换的2种方法
Nov 30 Python
用Python的Django框架完成视频处理任务的教程
Apr 02 Python
Python嵌套列表转一维的方法(压平嵌套列表)
Jul 03 Python
Python编程图形库之Pillow使用方法讲解
Dec 28 Python
Python OpenCV对本地视频文件进行分帧保存的实例
Jan 08 Python
python 实现手机自动拨打电话的方法(通话压力测试)
Aug 08 Python
对python中UDP,socket的使用详解
Aug 22 Python
python中调试或排错的五种方法示例
Sep 12 Python
基于Python和PyYAML读取yaml配置文件数据
Jan 13 Python
python3 logging日志封装实例
Apr 08 Python
Python StringIO及BytesIO包使用方法解析
Jun 15 Python
Android Q之气泡弹窗的实现示例
Jun 23 Python
pytorch使用指定GPU训练的实例
Aug 19 #Python
关于pytorch多GPU训练实例与性能对比分析
Aug 19 #Python
pytorch 更改预训练模型网络结构的方法
Aug 19 #Python
pytorch打印网络结构的实例
Aug 19 #Python
pytorch索引查找 index_select的例子
Aug 18 #Python
浅谈Pytorch中的torch.gather函数的含义
Aug 18 #Python
PyTorch中Tensor的维度变换实现
Aug 18 #Python
You might like
这东西价格,可以买几台TECSUN S-2000
2021/03/02 无线电
php 将字符串按大写字母分隔成字符串数组
2010/04/30 PHP
基于PHP的cURL快速入门教程 (小偷采集程序)
2011/06/02 PHP
php中常用的预定义变量小结
2012/05/09 PHP
php处理restful请求的路由类分享
2014/02/27 PHP
YII Framework框架教程之日志用法详解
2016/03/14 PHP
php的socket编程详解
2016/11/20 PHP
Yii框架应用组件用法实例分析
2020/05/15 PHP
JS Timing
2007/04/21 Javascript
input+select(multiple) 实现下拉框输入值
2009/05/21 Javascript
c#和Javascript操作同一json对象的实现代码
2012/01/17 Javascript
使用JavaScript动态设置样式实现代码(2)
2013/01/25 Javascript
jquery+Jscex打造游戏力度条
2020/09/12 Javascript
Angularjs分页查询的实现
2017/02/24 Javascript
实现div内部滚动条滚动到底部和顶部的代码
2017/11/15 Javascript
浅谈Angular 中何时取消订阅
2017/11/22 Javascript
微信小程序实现发送模板消息功能示例【通过openid推送消息给用户】
2019/05/05 Javascript
ES6中异步对象Promise用法详解
2019/07/31 Javascript
详解vue+axios给开发环境和生产环境配置不同的接口地址
2019/08/16 Javascript
jQuery实现提交表单时不提交隐藏div中input的方法
2019/10/08 jQuery
python删除过期文件的方法
2015/05/29 Python
Python简单获取自身外网IP的方法
2016/09/18 Python
python数据结构之列表和元组的详解
2017/09/23 Python
Python3.6使用tesseract-ocr的正确方法
2018/10/17 Python
python获取交互式ssh shell的方法
2019/02/14 Python
python numpy数组复制使用实例解析
2020/01/10 Python
中专毕业生自荐信范文
2013/11/28 职场文书
职工代表大会主持词
2014/04/01 职场文书
文艺演出策划方案
2014/06/07 职场文书
领导干部保密承诺书
2014/08/30 职场文书
公司试用期员工自我评价
2014/09/17 职场文书
2015年毕业实习工作总结
2014/12/12 职场文书
校长师德表现自我评价
2015/03/05 职场文书
高三数学复习备考教学反思
2016/02/18 职场文书
导游词之茶卡盐湖
2019/11/26 职场文书
嵌入式Redis服务器在Spring Boot测试中的使用教程
2021/07/21 Redis