在pytorch中为Module和Tensor指定GPU的例子


Posted in Python onAugust 19, 2019

pytorch指定GPU

在用pytorch写CNN的时候,发现一运行程序就卡住,然后cpu占用率100%,nvidia-smi 查看显卡发现并没有使用GPU。所以考虑将模型和输入数据及标签指定到gpu上。

pytorch中的Tensor和Module可以指定gpu运行,并且可以指定在哪一块gpu上运行,方法非常简单,就是直接调用Tensor类和Module类中的 .cuda() 方法。

import torch
from PIL import Image
import torch.nn as nn
import numpy as np
from torch.autograd import Variable

# 先看看有没有显卡
torch.cuda.is_available()
Out[16]: True
# 嗯,有显卡,可以指定,先生成一个Tensor
a = torch.Tensor(3,5)
a
Out[13]: 
.00000e-05 *
 0.0000 0.0000 2.0419 0.0000 2.0420
 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0132 0.0000 0.0131 0.0000 0.0000
[torch.FloatTensor of size 3x5]
a.cuda()
Out[14]: 
.00000e-05 *
 0.0000 0.0000 2.0419 0.0000 2.0420
 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0132 0.0000 0.0131 0.0000 0.0000
[torch.cuda.FloatTensor of size 3x5 (GPU 0)]
# 可以看到上面显示了(GPU 0),也就是说这个Tensor是在第一个GPU上的
a.cuda(1)
Traceback (most recent call last):

 File "<ipython-input-15-ef42531f63ca>", line 1, in <module>
  a.cuda(1)

 File "/home/chia/anaconda2/lib/python2.7/site-packages/torch/_utils.py", line 57, in _cuda
  with torch.cuda.device(device):

 File "/home/chia/anaconda2/lib/python2.7/site-packages/torch/cuda/__init__.py", line 127, in __enter__
  torch._C._cuda_setDevice(self.idx)

RuntimeError: cuda runtime error (10) : invalid device ordinal at torch/csrc/cuda/Module.cpp:84
# 这个报错了,因为只有一块GPU,所以指定cuda(1)无效。

同样滴,Variable变量和Module类型的模型也可以指定放在哪块GPU上

v = Variable(a)

v
Out[18]: 
Variable containing:
.00000e-05 *
 0.0000 0.0000 2.0419 0.0000 2.0420
 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0132 0.0000 0.0131 0.0000 0.0000
[torch.FloatTensor of size 3x5]

v.cuda(0)
Out[19]: 
Variable containing:
.00000e-05 *
 0.0000 0.0000 2.0419 0.0000 2.0420
 0.0000 0.0000 0.0000 0.0000 0.0000
 0.0132 0.0000 0.0131 0.0000 0.0000
[torch.cuda.FloatTensor of size 3x5 (GPU 0)]

model = DenoiseCNN()

model
Out[22]: 
DenoiseCNN (
 (hid_layer): Sequential (
  (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
  (2): LeakyReLU (0.2)
 )
 (first_layer): Sequential (
  (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): LeakyReLU (0.2)
 )
 (last_layer): Sequential (
  (0): Conv2d(32, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 )
)

model.cuda(0)
Out[23]: 
DenoiseCNN (
 (hid_layer): Sequential (
  (0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True)
  (2): LeakyReLU (0.2)
 )
 (first_layer): Sequential (
  (0): Conv2d(1, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
  (1): LeakyReLU (0.2)
 )
 (last_layer): Sequential (
  (0): Conv2d(32, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
 )
)

这样看不出来Module的变化,考虑看一下Module中的参数在哪里

for i, para in enumerate(model.parameters()):
  if i < 2:
    print para

Parameter containing:
(0 ,0 ,.,.) = 
 -3.1792e-02 -4.6396e-02 -4.3472e-02
 3.4903e-02 1.8558e-02 5.3955e-03
 2.4986e-02 3.8061e-02 -1.6658e-02

(0 ,1 ,.,.) = 
 -3.5041e-02 -3.6286e-02 -3.0819e-02
 1.0683e-02 9.0773e-03 -2.5379e-02
 2.9508e-03 2.8774e-02 7.4632e-04

(0 ,2 ,.,.) = 
 -4.6986e-02 -5.1183e-02 8.4346e-04
 -6.6864e-03 -2.8816e-02 1.2566e-02
 2.1682e-02 2.5485e-02 -7.2600e-03
  ...

(0 ,29,.,.) = 
 -5.5289e-03 -2.6012e-02 -2.7771e-02
 2.7528e-02 3.0460e-02 -1.2829e-02
 7.3387e-03 5.2633e-02 5.0601e-02

(0 ,30,.,.) = 
 -3.5881e-02 9.7000e-03 -3.3692e-02
 1.6257e-03 -4.0113e-02 3.5300e-02
 -2.1399e-03 3.0934e-02 -2.7513e-02

(0 ,31,.,.) = 
 -2.7492e-02 2.5803e-02 5.2171e-02
 -2.4082e-02 3.1887e-02 1.1292e-02
 5.8893e-02 -3.5452e-02 -1.2115e-02
   ⋮ 

(1 ,0 ,.,.) = 
 5.0664e-02 -4.1085e-02 2.9089e-02
 2.1555e-02 5.7176e-02 -7.5013e-03
 3.5075e-02 -1.6610e-02 3.4904e-02

(1 ,1 ,.,.) = 
 4.6716e-02 -1.2552e-02 -3.8132e-02
 -2.9573e-02 -3.5008e-02 -4.2891e-02
 9.5230e-03 -4.8599e-02 2.5357e-02

(1 ,2 ,.,.) = 
 -1.7859e-02 1.3442e-02 1.9493e-02
 1.8434e-02 1.4884e-03 8.6479e-03
 -7.1610e-03 3.5724e-02 6.2249e-03
  ...

(1 ,29,.,.) = 
 -3.3194e-02 1.6803e-05 2.3405e-02
 -5.2223e-02 6.5680e-03 -1.8427e-02
 -1.4476e-02 -1.5434e-02 -2.3108e-02

(1 ,30,.,.) = 
 2.3479e-02 1.2840e-02 4.5949e-02
 4.4833e-02 4.9272e-02 -3.7634e-02
 4.2787e-02 8.5841e-04 1.2332e-02

(1 ,31,.,.) = 
 4.1723e-02 -2.5295e-02 1.1326e-02
 -5.1707e-02 5.3201e-02 4.8928e-02
 -1.6735e-02 -8.7450e-03 -4.9530e-02
   ⋮ 

(2 ,0 ,.,.) = 
 -3.1728e-02 -3.9757e-02 6.5561e-03
 -1.7731e-02 2.8615e-02 2.7457e-02
 -2.1817e-03 -4.2405e-02 -3.6126e-03

(2 ,1 ,.,.) = 
 3.2434e-02 -1.1574e-03 1.3353e-02
 -2.3069e-02 4.9532e-02 1.6768e-02
 -3.5563e-02 -4.4264e-02 -2.0571e-02

(2 ,2 ,.,.) = 
 7.4980e-03 -5.7412e-03 -3.0638e-03
 1.1812e-02 -1.7851e-02 4.2195e-04
 3.9753e-02 3.8771e-02 4.3166e-03
  ...

(2 ,29,.,.) = 
 -5.0798e-02 4.3651e-02 -2.3798e-02
 -6.0957e-03 -5.6953e-02 1.2583e-02
 -2.3450e-02 -4.7136e-02 5.2458e-02

(2 ,30,.,.) = 
 1.5088e-02 2.6097e-02 4.9392e-03
 -9.0372e-03 -5.3276e-02 -1.7824e-02
 3.2060e-03 5.8820e-02 1.3459e-02

(2 ,31,.,.) = 
 -5.2557e-03 -4.9638e-02 -7.5522e-03
 2.8668e-02 -3.9617e-02 -1.8111e-02
 -4.0412e-02 1.1320e-02 -2.4005e-02

   ⋮ 

(29,0 ,.,.) = 
 -1.4393e-02 2.1343e-02 5.1940e-02
 5.7449e-02 3.1327e-02 -1.0721e-02
 -1.0184e-02 -6.2289e-03 3.9823e-02

(29,1 ,.,.) = 
 -4.2240e-03 5.8135e-02 5.2816e-02
 -4.9888e-02 3.3972e-02 4.3127e-02
 -2.3355e-02 -5.5401e-02 3.4952e-02

(29,2 ,.,.) = 
 4.0336e-02 7.6532e-03 5.4083e-02
 -2.7456e-02 3.9090e-02 4.4008e-02
 -2.0424e-02 -5.8922e-02 -4.4759e-03
  ...

(29,29,.,.) = 
 8.8037e-03 1.0347e-02 -2.2285e-02
 -1.0538e-02 -3.2981e-02 2.2300e-02
 -2.7337e-02 5.3113e-02 5.4608e-02

(29,30,.,.) = 
 3.1429e-02 5.2024e-03 -1.3882e-02
 -3.3123e-02 -2.7633e-03 1.9007e-02
 -2.9795e-02 3.7551e-02 5.6486e-02

(29,31,.,.) = 
 2.0140e-02 1.8530e-02 7.4208e-03
 2.7311e-02 5.3581e-02 -2.5553e-02
 -1.7285e-02 1.8722e-02 4.0104e-02
   ⋮ 

(30,0 ,.,.) = 
 5.2750e-02 4.5757e-03 -5.3894e-02
 -3.9297e-02 3.2918e-02 2.3571e-02
 -1.1806e-02 1.6091e-02 3.3755e-04

(30,1 ,.,.) = 
 4.2858e-02 -5.2211e-02 -3.5660e-02
 1.4807e-02 -5.8873e-02 5.5535e-02
 4.9854e-02 2.2946e-02 4.0968e-03

(30,2 ,.,.) = 
 3.0378e-02 2.1315e-02 9.1700e-03
 3.6277e-02 -4.0734e-02 4.8175e-02
 3.0748e-02 -2.7425e-02 -1.7741e-02
  ...

(30,29,.,.) = 
 3.1883e-02 2.5012e-02 2.8504e-02
 -1.3538e-02 3.5570e-02 -2.0261e-02
 -1.5959e-02 3.3373e-02 8.3261e-03

(30,30,.,.) = 
 2.7152e-02 -5.6752e-02 2.2697e-02
 1.2614e-02 -2.4174e-02 -2.5058e-02
 1.8737e-02 -1.3581e-03 -3.7116e-02

(30,31,.,.) = 
 -4.3278e-02 2.5873e-02 -1.6677e-02
 3.9483e-02 5.7898e-02 -4.1450e-02
 -5.8218e-02 -3.0660e-02 -4.2161e-02
   ⋮ 

(31,0 ,.,.) = 
 1.3370e-02 -1.4191e-02 -2.2524e-02
 2.1772e-02 -2.2440e-02 -3.0512e-03
 3.4139e-02 -1.9043e-02 1.1289e-02

(31,1 ,.,.) = 
 -5.1293e-02 -5.2802e-02 1.7022e-02
 5.1031e-02 -1.0345e-02 -4.4780e-02
 -4.9422e-02 4.7709e-02 -2.1215e-02

(31,2 ,.,.) = 
 2.2289e-02 -2.1746e-02 -5.3192e-02
 2.6651e-02 -1.6531e-02 2.2640e-02
 1.4012e-02 1.1405e-02 -1.4809e-02
  ...

(31,29,.,.) = 
 2.5505e-03 2.4052e-02 -4.7662e-02
 1.6068e-02 -4.2278e-02 -2.4670e-02
 -1.4684e-02 -3.8222e-02 -5.0006e-02

(31,30,.,.) = 
 -4.9350e-02 4.7564e-02 -7.3479e-03
 2.6490e-02 -1.1745e-02 3.4324e-02
 4.2650e-02 -5.4633e-02 9.4581e-03

(31,31,.,.) = 
 -3.2695e-02 -2.8899e-02 1.5543e-02
 -5.3662e-02 5.0727e-02 3.5950e-02
 4.6130e-02 -4.4754e-02 -4.5647e-02
[torch.cuda.FloatTensor of size 32x32x3x3 (GPU 0)]

Parameter containing:
.00000e-02 *
 -1.2723
 -5.2970
 -3.4638
 -1.5302
 0.7641
 5.7516
 -4.8427
 -0.7230
 4.5940
 -4.1709
 4.8093
 -4.7249
 -2.2756
 -5.5165
 5.1259
 -2.4693
 1.8527
 -0.4210
 -2.0518
 -3.8124
 -4.6195
 -4.3019
 -0.8631
 -0.4400
 5.4604
 -5.5597
 1.5557
 4.2336
 3.9482
 -1.4457
 2.6124
 -1.8218
[torch.cuda.FloatTensor of size 32 (GPU 0)]

可以看出,模型的参变量是放在GPU上的。

通过指定了gpu后,就可以使用gpu来训练模型了~美滋滋

以上这篇在pytorch中为Module和Tensor指定GPU的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
Python连接mssql数据库编码问题解决方法
Jan 01 Python
在ironpython中利用装饰器执行SQL操作的例子
May 02 Python
python代码实现ID3决策树算法
Dec 20 Python
Python图像处理之识别图像中的文字(实例讲解)
May 10 Python
Python任意字符串转16, 32, 64进制的方法
Jun 12 Python
python写入数据到csv或xlsx文件的3种方法
Aug 23 Python
Python中的相关分析correlation analysis的实现
Aug 29 Python
Pandas 缺失数据处理的实现
Nov 04 Python
在keras下实现多个模型的融合方式
May 23 Python
python em算法的实现
Oct 03 Python
python用tkinter实现一个gui的翻译工具
Oct 26 Python
Python高阶函数与装饰器函数的深入讲解
Nov 10 Python
pytorch使用指定GPU训练的实例
Aug 19 #Python
关于pytorch多GPU训练实例与性能对比分析
Aug 19 #Python
pytorch 更改预训练模型网络结构的方法
Aug 19 #Python
pytorch打印网络结构的实例
Aug 19 #Python
pytorch索引查找 index_select的例子
Aug 18 #Python
浅谈Pytorch中的torch.gather函数的含义
Aug 18 #Python
PyTorch中Tensor的维度变换实现
Aug 18 #Python
You might like
5种PHP创建数组的实例代码分享
2014/01/17 PHP
THinkPHP获取客户端IP与IP地址查询的方法
2016/11/14 PHP
CI框架使用composer安装的依赖包步骤与方法分析
2016/11/21 PHP
PHP 中魔术常量的实例详解
2017/10/26 PHP
thinkPHP中钩子的使用方法实例分析
2017/11/16 PHP
IE浏览器兼容Firefox的JS脚本的代码
2008/10/23 Javascript
jQuery中对节点进行操作的相关介绍
2013/04/16 Javascript
ExtJs设置GridPanel表格文本垂直居中示例
2013/07/15 Javascript
可自己添加html的伪弹出框实现代码
2013/09/08 Javascript
jQuery实现购物车多物品数量的加减+总价计算
2014/06/06 Javascript
javascript实现鼠标拖动改变层大小的方法
2015/04/30 Javascript
javascript删除元素节点removeChild()用法实例
2015/05/26 Javascript
JavaScript设计模式初探
2016/01/07 Javascript
浅谈js中的in-for循环
2016/06/28 Javascript
vue学习笔记之指令v-text &amp;&amp; v-html &amp;&amp; v-bind详解
2017/05/12 Javascript
原生JS控制多个滚动条同步跟随滚动效果
2017/12/22 Javascript
ES6中Set和Map数据结构,Map与其它数据结构互相转换操作实例详解
2019/02/28 Javascript
Vue 中 a标签上href无法跳转的解决方式
2019/11/12 Javascript
微信公众号H5之微信分享常见错误和问题(小结)
2019/11/14 Javascript
[01:14:05]《加油DOTA》第四期
2014/08/25 DOTA
python通过cookie模拟已登录状态的初步研究
2016/11/09 Python
利用python将图片转换成excel文档格式
2017/12/30 Python
Python实现获取本地及远程图片大小的方法示例
2018/07/21 Python
在python中只选取列表中某一纵列的方法
2018/11/28 Python
Django框架使用内置方法实现登录功能详解
2019/06/12 Python
详解Django-channels 实现WebSocket实例
2019/08/22 Python
你还在@微信官方?聊聊Python生成你想要的微信头像
2019/09/25 Python
为什么说python更适合树莓派编程
2020/07/20 Python
scrapy结合selenium解析动态页面的实现
2020/09/28 Python
数控技校生自我鉴定
2014/03/02 职场文书
公司员工活动策划方案
2014/08/20 职场文书
青年教师师德演讲稿
2014/08/26 职场文书
学校世界艾滋病日宣传活动总结
2015/05/05 职场文书
2015秋季幼儿园开学通知
2015/07/16 职场文书
小学五年级班主任工作经验交流材料
2015/11/02 职场文书
2016猴年开门红标语口号
2015/12/26 职场文书