Posted in Python onAugust 19, 2019
一个继承nn.module的model它包含一个叫做children()的函数,这个函数可以用来提取出model每一层的网络结构,在此基础上进行修改即可,修改方法如下(去除后两层):
resnet_layer = nn.Sequential(*list(model.children())[:-2])
那么,接下来就可以构建我们的网络了:
class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取掉model的后两层 self.resnet_layer = nn.Sequential(*list(model.children())[:-2]) self.transion_layer = nn.ConvTranspose2d(2048, 2048, kernel_size=14, stride=3) self.pool_layer = nn.MaxPool2d(32) self.Linear_layer = nn.Linear(2048, 8) def forward(self, x): x = self.resnet_layer(x) x = self.transion_layer(x) x = self.pool_layer(x) x = x.view(x.size(0), -1) x = self.Linear_layer(x) return x
最后,构建一个对象,并加载resnet预训练的参数就可以啦~
resnet = models.resnet50(pretrained=True) model = Net(resnet)
以上这篇pytorch 更改预训练模型网络结构的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。
pytorch 更改预训练模型网络结构的方法
- Author -
wayne980声明:登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。
Reply on: @reply_date@
@reply_contents@