PyTorch中Tensor的维度变换实现


Posted in Python onAugust 18, 2019

对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看。

维度查看:torch.Tensor.size()

查看当前 tensor 的维度

举个例子:

>>> import torch
>>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]])
>>> a.size()
torch.Size([1, 3, 2])

张量变形:torch.Tensor.view(*args) → Tensor

返回一个有相同数据但大小不同的 tensor。 返回的 tensor 必须有与原 tensor 相同的数据和相同数目的元素,但可以有不同的大小。一个 tensor 必须是连续的 contiguous() 才能被查看。

举个例子:

>>> x = torch.randn(2, 9)
>>> x.size()
torch.Size([2, 9])
>>> x
tensor([[-1.6833, -0.4100, -1.5534, -0.6229, -1.0310, -0.8038, 0.5166, 0.9774,
     0.3455],
    [-0.2306, 0.4217, 1.2874, -0.3618, 1.7872, -0.9012, 0.8073, -1.1238,
     -0.3405]])
>>> y = x.view(3, 6)
>>> y.size()
torch.Size([3, 6])
>>> y
tensor([[-1.6833, -0.4100, -1.5534, -0.6229, -1.0310, -0.8038],
    [ 0.5166, 0.9774, 0.3455, -0.2306, 0.4217, 1.2874],
    [-0.3618, 1.7872, -0.9012, 0.8073, -1.1238, -0.3405]])
>>> z = x.view(2, 3, 3)
>>> z.size()
torch.Size([2, 3, 3])
>>> z
tensor([[[-1.6833, -0.4100, -1.5534],
     [-0.6229, -1.0310, -0.8038],
     [ 0.5166, 0.9774, 0.3455]],

    [[-0.2306, 0.4217, 1.2874],
     [-0.3618, 1.7872, -0.9012],
     [ 0.8073, -1.1238, -0.3405]]])

可以看到 x 和 y 、z 中数据的数量和每个数据的大小都是相等的,只是尺寸或维度数量发生了改变。

压缩 / 解压张量:torch.squeeze()、torch.unsqueeze()

  • torch.squeeze(input, dim=None, out=None)

将输入张量形状中的 1 去除并返回。如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)

当给定 dim 时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B),squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。

返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。

举个例子:

>>> x = torch.randn(3, 1, 2)
>>> x
tensor([[[-0.1986, 0.4352]],

    [[ 0.0971, 0.2296]],

    [[ 0.8339, -0.5433]]])
>>> x.squeeze().size() # 不加参数,去掉所有为元素个数为1的维度
torch.Size([3, 2])
>>> x.squeeze()
tensor([[-0.1986, 0.4352],
    [ 0.0971, 0.2296],
    [ 0.8339, -0.5433]])
>>> torch.squeeze(x, 0).size() # 加上参数,去掉第一维的元素,不起作用,因为第一维有2个元素
torch.Size([3, 1, 2])
>>> torch.squeeze(x, 1).size() # 加上参数,去掉第二维的元素,正好为 1,起作用
torch.Size([3, 2])

可以看到如果加参数,只有维度中尺寸为 1 的位置才会消失

  • torch.unsqueeze(input, dim, out=None)

返回一个新的张量,对输入的制定位置插入维度 1

返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。

如果 dim 为负,则将会被转化 dim+input.dim()+1

接着用上面的数据举个例子:

>>> x.unsqueeze(0).size()
torch.Size([1, 3, 1, 2])
>>> x.unsqueeze(0)
tensor([[[[-0.1986, 0.4352]],

     [[ 0.0971, 0.2296]],

     [[ 0.8339, -0.5433]]]])
>>> x.unsqueeze(-1).size()
torch.Size([3, 1, 2, 1])
>>> x.unsqueeze(-1)
tensor([[[[-0.1986],
     [ 0.4352]]],


    [[[ 0.0971],
     [ 0.2296]]],


    [[[ 0.8339],
     [-0.5433]]]])

可以看到在指定的位置,增加了一个维度。

扩大张量:torch.Tensor.expand(*sizes) → Tensor

返回 tensor 的一个新视图,单个维度扩大为更大的尺寸。 tensor 也可以扩大为更高维,新增加的维度将附在前面。 扩大 tensor 不需要分配新内存,只是仅仅新建一个 tensor 的视图,其中通过将 stride 设为 0,一维将会扩展位更高维。任何一个一维的在不分配新内存情况下可扩展为任意的数值。

举个例子:

>>> x = torch.Tensor([[1], [2], [3]])
>>> x.size()
torch.Size([3, 1])
>>> x.expand(3, 4)
tensor([[1., 1., 1., 1.],
    [2., 2., 2., 2.],
    [3., 3., 3., 3.]])
>>> x.expand(3, -1)
tensor([[1.],
    [2.],
    [3.]])

原数据是 3 行 1 列,扩大后变为 3 行 4 列,方法中填 -1 的效果与 1 一样,只有尺寸为 1 才可以扩大,如果不为 1 就无法改变,而且尺寸不为 1 的维度必须要和原来一样填写进去。

重复张量:torch.Tensor.repeat(*sizes)

沿着指定的维度重复 tensor。 不同于 expand(),本函数复制的是 tensor 中的数据。

举个例子:

>>> x = torch.Tensor([1, 2, 3])
>>> x.size()
torch.Size([3])
>>> x.repeat(4, 2)
    [1., 2., 3., 1., 2., 3.],
    [1., 2., 3., 1., 2., 3.],
    [1., 2., 3., 1., 2., 3.]])
>>> x.repeat(4, 2).size()
torch.Size([4, 6])

原数据为 1 行 3 列,按行方向扩大为原来的 4 倍,列方向扩大为原来的 2 倍,变为了 4 行 6 列。

变化时可以看成是把原数据作成一个整体,再按指定的维度和尺寸重复,变成一个 4 行 2 列的矩阵,其中的每一个单位都是相同的,再把原数据放到每个单位中。

矩阵转置:torch.t(input, out=None) → Tensor

输入一个矩阵(2维张量),并转置0, 1维。 可以被视为函数 transpose(input, 0, 1) 的简写函数。

举个例子:

>>> x = torch.randn(3, 5)
>>> x
tensor([[-1.0752, -0.9706, -0.8770, -0.4224, 0.9776],
    [ 0.2489, -0.2986, -0.7816, -0.0823, 1.1811],
    [-1.1124, 0.2160, -0.8446, 0.1762, -0.5164]])
>>> x.t()
tensor([[-1.0752, 0.2489, -1.1124],
    [-0.9706, -0.2986, 0.2160],
    [-0.8770, -0.7816, -0.8446],
    [-0.4224, -0.0823, 0.1762],
    [ 0.9776, 1.1811, -0.5164]])
>>> torch.t(x) # 另一种用法
tensor([[-1.0752, 0.2489, -1.1124],
    [-0.9706, -0.2986, 0.2160],
    [-0.8770, -0.7816, -0.8446],
    [-0.4224, -0.0823, 0.1762],
    [ 0.9776, 1.1811, -0.5164]])

必须要是 2 维的张量,也就是矩阵,才可以使用。

维度置换:torch.transpose()、torch.Tensor.permute()

  • torch.transpose(input, dim0, dim1, out=None) → Tensor

返回输入矩阵 input 的转置。交换维度 dim0 和 dim1。 输出张量与输入张量共享内存,所以改变其中一个会导致另外一个也被修改。

举个例子:

>>> x = torch.randn(2, 4, 3)
>>> x
tensor([[[-1.2502, -0.7363, 0.5534],
     [-0.2050, 3.1847, -1.6729],
     [-0.2591, -0.0860, 0.4660],
     [-1.2189, -1.1206, 0.0637]],

    [[ 1.4791, -0.7569, 2.5017],
     [ 0.0098, -1.0217, 0.8142],
     [-0.2414, -0.1790, 2.3506],
     [-0.6860, -0.2363, 1.0481]]])
>>> torch.transpose(x, 1, 2).size()
torch.Size([2, 3, 4])
>>> torch.transpose(x, 1, 2)
tensor([[[-1.2502, -0.2050, -0.2591, -1.2189],
     [-0.7363, 3.1847, -0.0860, -1.1206],
     [ 0.5534, -1.6729, 0.4660, 0.0637]],

    [[ 1.4791, 0.0098, -0.2414, -0.6860],
     [-0.7569, -1.0217, -0.1790, -0.2363],
     [ 2.5017, 0.8142, 2.3506, 1.0481]]])
>>> torch.transpose(x, 0, 1).size()
torch.Size([4, 2, 3])
>>> torch.transpose(x, 0, 1)
tensor([[[-1.2502, -0.7363, 0.5534],
     [ 1.4791, -0.7569, 2.5017]],

    [[-0.2050, 3.1847, -1.6729],
     [ 0.0098, -1.0217, 0.8142]],

    [[-0.2591, -0.0860, 0.4660],
     [-0.2414, -0.1790, 2.3506]],

    [[-1.2189, -1.1206, 0.0637],
     [-0.6860, -0.2363, 1.0481]]])

可以对多维度的张量进行转置

  • torch.Tensor.permute(dims)

将 tensor 的维度换位

接着用上面的数据举个例子:

>>> x.size()
torch.Size([2, 4, 3])
>>> x.permute(2, 0, 1).size()
torch.Size([3, 2, 4])
>>> x.permute(2, 0, 1)
tensor([[[-1.2502, -0.2050, -0.2591, -1.2189],
     [ 1.4791, 0.0098, -0.2414, -0.6860]],

    [[-0.7363, 3.1847, -0.0860, -1.1206],
     [-0.7569, -1.0217, -0.1790, -0.2363]],

    [[ 0.5534, -1.6729, 0.4660, 0.0637],
     [ 2.5017, 0.8142, 2.3506, 1.0481]]])

直接在方法中填入各个维度的索引,张量就会交换指定维度的尺寸,不限于两两交换。

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python实现跨文件全局变量的方法
Jul 07 Python
Django框架中数据的连锁查询和限制返回数据的方法
Jul 17 Python
将Django框架和遗留的Web应用集成的方法
Jul 24 Python
python实现简单中文词频统计示例
Nov 08 Python
pandas使用apply多列生成一列数据的实例
Nov 28 Python
django配置连接数据库及原生sql语句的使用方法
Mar 03 Python
python 实现矩阵按对角线打印
Nov 29 Python
windows10环境下用anaconda和VScode配置的图文教程
Mar 30 Python
keras分类模型中的输入数据与标签的维度实例
Jul 03 Python
python list的index()和find()的实现
Nov 16 Python
Python 中的 copy()和deepcopy()
Nov 07 Python
Python面试不修改数组找出重复的数字
May 20 Python
PyTorch中Tensor的拼接与拆分的实现
Aug 18 #Python
详解PyTorch中Tensor的高阶操作
Aug 18 #Python
浅析PyTorch中nn.Linear的使用
Aug 18 #Python
Pytorch实现GoogLeNet的方法
Aug 18 #Python
PyTorch之图像和Tensor填充的实例
Aug 18 #Python
Pytorch Tensor的索引与切片例子
Aug 18 #Python
在PyTorch中Tensor的查找和筛选例子
Aug 18 #Python
You might like
php7安装yar扩展的方法详解
2017/08/03 PHP
thinkphp5框架前后端分离项目实现分页功能的方法分析
2019/10/08 PHP
js资料toString 方法
2007/03/13 Javascript
javascript EXCEL 操作类代码
2009/07/30 Javascript
Extjs学习笔记之五 一个小细节renderTo和applyTo的区别
2010/01/07 Javascript
基于JQuery的一句代码实现表格的简单筛选
2010/07/26 Javascript
关于jquery.validate1.9.0前台验证的使用介绍
2013/04/26 Javascript
javascript框架设计之框架分类及主要功能
2015/06/23 Javascript
微信小程序 SocketIO 实例讲解
2016/10/13 Javascript
JavaScript之DOM_动力节点Java学院整理
2017/07/03 Javascript
理解 JavaScript EventEmitter
2018/03/29 Javascript
利用es6 new.target来对模拟抽象类的方法
2019/05/10 Javascript
js+springMVC 提交数组数据到后台的实例
2019/09/21 Javascript
node.js使用 http-proxy 创建代理服务器操作示例
2020/02/10 Javascript
Vue element-ui父组件控制子组件的表单校验操作
2020/07/17 Javascript
vue中实现拖动调整左右两侧div的宽度的示例代码
2020/07/22 Javascript
JavaScript实现矩形块大小任意缩放
2020/08/25 Javascript
python控制windows剪贴板,向剪贴板中写入图片的实例
2018/05/31 Python
Python实现繁体中文与简体中文相互转换的方法示例
2018/12/18 Python
opencv 获取rtsp流媒体视频的实现方法
2019/08/23 Python
Python API自动化框架总结
2019/11/12 Python
Python数据可视化图实现过程详解
2020/06/12 Python
Numpy(Pandas)删除全为零的列的方法
2020/09/11 Python
CSS3区域模块region相关编写示例
2015/08/28 HTML / CSS
html5本地存储_动力节点Java学院整理
2017/07/12 HTML / CSS
美国最大的香水出口:FragranceX.com
2017/11/04 全球购物
巴西香水和化妆品购物网站:The Beauty Box
2019/09/03 全球购物
发展部经理职责规定
2014/02/22 职场文书
劳资协议书范本
2014/04/23 职场文书
政府法律服务方案
2014/06/14 职场文书
个人工作总结范文2014
2014/11/07 职场文书
同学会邀请函模板
2015/01/30 职场文书
基石观后感
2015/06/12 职场文书
大学生安全教育主题班会
2015/08/12 职场文书
观看安全警示教育片心得体会
2016/01/15 职场文书
Python中zipfile压缩包模块的使用
2021/05/14 Python