PyTorch中Tensor的维度变换实现


Posted in Python onAugust 18, 2019

对于 PyTorch 的基本数据对象 Tensor (张量),在处理问题时,需要经常改变数据的维度,以便于后期的计算和进一步处理,本文旨在列举一些维度变换的方法并举例,方便大家查看。

维度查看:torch.Tensor.size()

查看当前 tensor 的维度

举个例子:

>>> import torch
>>> a = torch.Tensor([[[1, 2], [3, 4], [5, 6]]])
>>> a.size()
torch.Size([1, 3, 2])

张量变形:torch.Tensor.view(*args) → Tensor

返回一个有相同数据但大小不同的 tensor。 返回的 tensor 必须有与原 tensor 相同的数据和相同数目的元素,但可以有不同的大小。一个 tensor 必须是连续的 contiguous() 才能被查看。

举个例子:

>>> x = torch.randn(2, 9)
>>> x.size()
torch.Size([2, 9])
>>> x
tensor([[-1.6833, -0.4100, -1.5534, -0.6229, -1.0310, -0.8038, 0.5166, 0.9774,
     0.3455],
    [-0.2306, 0.4217, 1.2874, -0.3618, 1.7872, -0.9012, 0.8073, -1.1238,
     -0.3405]])
>>> y = x.view(3, 6)
>>> y.size()
torch.Size([3, 6])
>>> y
tensor([[-1.6833, -0.4100, -1.5534, -0.6229, -1.0310, -0.8038],
    [ 0.5166, 0.9774, 0.3455, -0.2306, 0.4217, 1.2874],
    [-0.3618, 1.7872, -0.9012, 0.8073, -1.1238, -0.3405]])
>>> z = x.view(2, 3, 3)
>>> z.size()
torch.Size([2, 3, 3])
>>> z
tensor([[[-1.6833, -0.4100, -1.5534],
     [-0.6229, -1.0310, -0.8038],
     [ 0.5166, 0.9774, 0.3455]],

    [[-0.2306, 0.4217, 1.2874],
     [-0.3618, 1.7872, -0.9012],
     [ 0.8073, -1.1238, -0.3405]]])

可以看到 x 和 y 、z 中数据的数量和每个数据的大小都是相等的,只是尺寸或维度数量发生了改变。

压缩 / 解压张量:torch.squeeze()、torch.unsqueeze()

  • torch.squeeze(input, dim=None, out=None)

将输入张量形状中的 1 去除并返回。如果输入是形如(A×1×B×1×C×1×D),那么输出形状就为: (A×B×C×D)

当给定 dim 时,那么挤压操作只在给定维度上。例如,输入形状为: (A×1×B),squeeze(input, 0) 将会保持张量不变,只有用 squeeze(input, 1),形状会变成 (A×B)。

返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。

举个例子:

>>> x = torch.randn(3, 1, 2)
>>> x
tensor([[[-0.1986, 0.4352]],

    [[ 0.0971, 0.2296]],

    [[ 0.8339, -0.5433]]])
>>> x.squeeze().size() # 不加参数,去掉所有为元素个数为1的维度
torch.Size([3, 2])
>>> x.squeeze()
tensor([[-0.1986, 0.4352],
    [ 0.0971, 0.2296],
    [ 0.8339, -0.5433]])
>>> torch.squeeze(x, 0).size() # 加上参数,去掉第一维的元素,不起作用,因为第一维有2个元素
torch.Size([3, 1, 2])
>>> torch.squeeze(x, 1).size() # 加上参数,去掉第二维的元素,正好为 1,起作用
torch.Size([3, 2])

可以看到如果加参数,只有维度中尺寸为 1 的位置才会消失

  • torch.unsqueeze(input, dim, out=None)

返回一个新的张量,对输入的制定位置插入维度 1

返回张量与输入张量共享内存,所以改变其中一个的内容会改变另一个。

如果 dim 为负,则将会被转化 dim+input.dim()+1

接着用上面的数据举个例子:

>>> x.unsqueeze(0).size()
torch.Size([1, 3, 1, 2])
>>> x.unsqueeze(0)
tensor([[[[-0.1986, 0.4352]],

     [[ 0.0971, 0.2296]],

     [[ 0.8339, -0.5433]]]])
>>> x.unsqueeze(-1).size()
torch.Size([3, 1, 2, 1])
>>> x.unsqueeze(-1)
tensor([[[[-0.1986],
     [ 0.4352]]],


    [[[ 0.0971],
     [ 0.2296]]],


    [[[ 0.8339],
     [-0.5433]]]])

可以看到在指定的位置,增加了一个维度。

扩大张量:torch.Tensor.expand(*sizes) → Tensor

返回 tensor 的一个新视图,单个维度扩大为更大的尺寸。 tensor 也可以扩大为更高维,新增加的维度将附在前面。 扩大 tensor 不需要分配新内存,只是仅仅新建一个 tensor 的视图,其中通过将 stride 设为 0,一维将会扩展位更高维。任何一个一维的在不分配新内存情况下可扩展为任意的数值。

举个例子:

>>> x = torch.Tensor([[1], [2], [3]])
>>> x.size()
torch.Size([3, 1])
>>> x.expand(3, 4)
tensor([[1., 1., 1., 1.],
    [2., 2., 2., 2.],
    [3., 3., 3., 3.]])
>>> x.expand(3, -1)
tensor([[1.],
    [2.],
    [3.]])

原数据是 3 行 1 列,扩大后变为 3 行 4 列,方法中填 -1 的效果与 1 一样,只有尺寸为 1 才可以扩大,如果不为 1 就无法改变,而且尺寸不为 1 的维度必须要和原来一样填写进去。

重复张量:torch.Tensor.repeat(*sizes)

沿着指定的维度重复 tensor。 不同于 expand(),本函数复制的是 tensor 中的数据。

举个例子:

>>> x = torch.Tensor([1, 2, 3])
>>> x.size()
torch.Size([3])
>>> x.repeat(4, 2)
    [1., 2., 3., 1., 2., 3.],
    [1., 2., 3., 1., 2., 3.],
    [1., 2., 3., 1., 2., 3.]])
>>> x.repeat(4, 2).size()
torch.Size([4, 6])

原数据为 1 行 3 列,按行方向扩大为原来的 4 倍,列方向扩大为原来的 2 倍,变为了 4 行 6 列。

变化时可以看成是把原数据作成一个整体,再按指定的维度和尺寸重复,变成一个 4 行 2 列的矩阵,其中的每一个单位都是相同的,再把原数据放到每个单位中。

矩阵转置:torch.t(input, out=None) → Tensor

输入一个矩阵(2维张量),并转置0, 1维。 可以被视为函数 transpose(input, 0, 1) 的简写函数。

举个例子:

>>> x = torch.randn(3, 5)
>>> x
tensor([[-1.0752, -0.9706, -0.8770, -0.4224, 0.9776],
    [ 0.2489, -0.2986, -0.7816, -0.0823, 1.1811],
    [-1.1124, 0.2160, -0.8446, 0.1762, -0.5164]])
>>> x.t()
tensor([[-1.0752, 0.2489, -1.1124],
    [-0.9706, -0.2986, 0.2160],
    [-0.8770, -0.7816, -0.8446],
    [-0.4224, -0.0823, 0.1762],
    [ 0.9776, 1.1811, -0.5164]])
>>> torch.t(x) # 另一种用法
tensor([[-1.0752, 0.2489, -1.1124],
    [-0.9706, -0.2986, 0.2160],
    [-0.8770, -0.7816, -0.8446],
    [-0.4224, -0.0823, 0.1762],
    [ 0.9776, 1.1811, -0.5164]])

必须要是 2 维的张量,也就是矩阵,才可以使用。

维度置换:torch.transpose()、torch.Tensor.permute()

  • torch.transpose(input, dim0, dim1, out=None) → Tensor

返回输入矩阵 input 的转置。交换维度 dim0 和 dim1。 输出张量与输入张量共享内存,所以改变其中一个会导致另外一个也被修改。

举个例子:

>>> x = torch.randn(2, 4, 3)
>>> x
tensor([[[-1.2502, -0.7363, 0.5534],
     [-0.2050, 3.1847, -1.6729],
     [-0.2591, -0.0860, 0.4660],
     [-1.2189, -1.1206, 0.0637]],

    [[ 1.4791, -0.7569, 2.5017],
     [ 0.0098, -1.0217, 0.8142],
     [-0.2414, -0.1790, 2.3506],
     [-0.6860, -0.2363, 1.0481]]])
>>> torch.transpose(x, 1, 2).size()
torch.Size([2, 3, 4])
>>> torch.transpose(x, 1, 2)
tensor([[[-1.2502, -0.2050, -0.2591, -1.2189],
     [-0.7363, 3.1847, -0.0860, -1.1206],
     [ 0.5534, -1.6729, 0.4660, 0.0637]],

    [[ 1.4791, 0.0098, -0.2414, -0.6860],
     [-0.7569, -1.0217, -0.1790, -0.2363],
     [ 2.5017, 0.8142, 2.3506, 1.0481]]])
>>> torch.transpose(x, 0, 1).size()
torch.Size([4, 2, 3])
>>> torch.transpose(x, 0, 1)
tensor([[[-1.2502, -0.7363, 0.5534],
     [ 1.4791, -0.7569, 2.5017]],

    [[-0.2050, 3.1847, -1.6729],
     [ 0.0098, -1.0217, 0.8142]],

    [[-0.2591, -0.0860, 0.4660],
     [-0.2414, -0.1790, 2.3506]],

    [[-1.2189, -1.1206, 0.0637],
     [-0.6860, -0.2363, 1.0481]]])

可以对多维度的张量进行转置

  • torch.Tensor.permute(dims)

将 tensor 的维度换位

接着用上面的数据举个例子:

>>> x.size()
torch.Size([2, 4, 3])
>>> x.permute(2, 0, 1).size()
torch.Size([3, 2, 4])
>>> x.permute(2, 0, 1)
tensor([[[-1.2502, -0.2050, -0.2591, -1.2189],
     [ 1.4791, 0.0098, -0.2414, -0.6860]],

    [[-0.7363, 3.1847, -0.0860, -1.1206],
     [-0.7569, -1.0217, -0.1790, -0.2363]],

    [[ 0.5534, -1.6729, 0.4660, 0.0637],
     [ 2.5017, 0.8142, 2.3506, 1.0481]]])

直接在方法中填入各个维度的索引,张量就会交换指定维度的尺寸,不限于两两交换。

 以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Node.js和Socket.IO扩展Django的实时处理功能
Apr 20 Python
Python中使用strip()方法删除字符串中空格的教程
May 20 Python
python发送邮件实例分享
Jul 28 Python
python中模块的__all__属性详解
Oct 26 Python
Python3+django2.0+apache2+ubuntu14部署网站上线的方法
Jul 07 Python
对pandas的层次索引与取值的新方法详解
Nov 06 Python
解决python3 HTMLTestRunner测试报告中文乱码的问题
Dec 17 Python
python按照多个条件排序的方法
Feb 08 Python
python计算导数并绘图的实例
Feb 29 Python
详解Anaconda安装tensorflow报错问题解决方法
Nov 01 Python
详细总结Python常见的安全问题
May 21 Python
Pycharm连接远程服务器并远程调试的全过程
Jun 24 Python
PyTorch中Tensor的拼接与拆分的实现
Aug 18 #Python
详解PyTorch中Tensor的高阶操作
Aug 18 #Python
浅析PyTorch中nn.Linear的使用
Aug 18 #Python
Pytorch实现GoogLeNet的方法
Aug 18 #Python
PyTorch之图像和Tensor填充的实例
Aug 18 #Python
Pytorch Tensor的索引与切片例子
Aug 18 #Python
在PyTorch中Tensor的查找和筛选例子
Aug 18 #Python
You might like
php算开始时间到过期时间的相隔的天数
2011/01/12 PHP
php中的ini配置原理详解
2014/10/14 PHP
Yii2 assets清除缓存的方法
2016/05/16 PHP
PHPMailer ThinkPHP实现自动发送邮件功能
2018/06/10 PHP
PHP 模拟登陆功能实例详解
2019/09/10 PHP
JS类定义原型方法的两种实现的区别评论很多
2007/09/12 Javascript
最短的javascript:地址栏载入脚本代码
2011/10/13 Javascript
javascript替换已有元素replaceChild()使用介绍
2014/04/03 Javascript
纯js模拟div层弹性运动的方法
2015/07/27 Javascript
解析浏览器端的AJAX缓存机制
2016/06/21 Javascript
AngularJs验证重复密码的方法(两种)
2016/11/25 Javascript
干货!教大家如何选择Vue和React
2017/03/13 Javascript
详解webpack打包vue时提取css
2017/05/26 Javascript
详解Vue 开发模式下跨域问题
2017/06/06 Javascript
JavaScript实现简单的图片切换功能(实例代码)
2020/04/10 Javascript
JS数组push、unshift、pop、shift方法的实现与使用方法示例
2020/04/29 Javascript
详解基于element的区间选择组件校验(交易金额)
2021/01/07 Javascript
[49:30]DOTA2-DPC中国联赛正赛 Dragon vs Dynasty BO3 第二场 3月4日
2021/03/11 DOTA
分析用Python脚本关闭文件操作的机制
2015/06/28 Python
Python的Django框架可适配的各种数据库介绍
2015/07/15 Python
Python使用matplotlib填充图形指定区域代码示例
2018/01/16 Python
取numpy数组的某几行某几列方法
2018/04/03 Python
Pandas GroupBy对象 索引与迭代方法
2018/11/16 Python
python实现AES和RSA加解密的方法
2019/03/28 Python
python3文件复制、延迟文件复制任务的实现方法
2019/09/02 Python
Python计算IV值的示例讲解
2020/02/28 Python
HTML5制作酷炫音频播放器插件图文教程
2014/12/30 HTML / CSS
FC-Moto丹麦:欧洲最大的摩托车服装和头盔商店之一
2019/08/20 全球购物
Habitat家居英国官方网站:沙发、家具、照明、厨房和户外
2019/12/12 全球购物
营业员实习自我鉴定
2013/12/07 职场文书
档案工作汇报材料
2014/08/21 职场文书
运动会广播稿诗歌版
2014/09/12 职场文书
党员自我评议对照检查材料
2014/09/27 职场文书
开展批评与自我批评发言材料
2014/10/17 职场文书
英语教学课后反思
2016/02/15 职场文书
餐饮行业关注的9大营销策略
2019/08/26 职场文书