使用OpenCV去除面积较小的连通域


Posted in Python onJuly 05, 2020

这是后期补充的部分,和前期的代码不太一样

效果图

使用OpenCV去除面积较小的连通域

源代码

//测试
void CCutImageVS2013Dlg::OnBnClickedTestButton1()
{
	vector<vector<Point> > contours;  //轮廓数组
	vector<Point2d> centers;    //轮廓质心坐标 
	vector<vector<Point> >::iterator itr; //轮廓迭代器
	vector<Point2d>::iterator itrc;  //质心坐标迭代器
	vector<vector<Point> > con;   //当前轮廓

	double area;
	double minarea = 1000;
	double maxarea = 0;
	Moments mom;       // 轮廓矩
	Mat image, gray, edge, dst;
	image = imread("D:\\66.png");
	cvtColor(image, gray, COLOR_BGR2GRAY);
	Mat rgbImg(gray.size(), CV_8UC3); //创建三通道图
	blur(gray, edge, Size(3, 3));       //模糊去噪
	threshold(edge, edge, 200, 255, THRESH_BINARY_INV); //二值化处理,黑底白字
	//--------去除较小轮廓,并寻找最大轮廓--------------------------
	findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //寻找轮廓
	itr = contours.begin();    //使用迭代器去除噪声轮廓
	while (itr != contours.end())
	{
		area = contourArea(*itr);  //获得轮廓面积
		if (area<minarea)    //删除较小面积的轮廓 
		{
			itr = contours.erase(itr); //itr一旦erase,需要重新赋值
		}
		else
		{
			itr++;
		}
		if (area>maxarea)    //寻找最大轮廓
		{
			maxarea = area;
		}
	}
	dst = Mat::zeros(image.rows, image.cols, CV_8UC3);
	/*绘制连通区域轮廓,计算质心坐标*/
	Point2d center;
	itr = contours.begin();
	while (itr != contours.end())
	{
		area = contourArea(*itr);		
		con.push_back(*itr);   //获取当前轮廓
		if (area == maxarea)
		{
			vector<Rect> boundRect(1); //定义外接矩形集合
			boundRect[0] = boundingRect(Mat(*itr));
			cvtColor(gray, rgbImg, COLOR_GRAY2BGR);
			Rect select;
			select.x = boundRect[0].x;
			select.y = boundRect[0].y;
			select.width = boundRect[0].width;
			select.height = boundRect[0].height;
			rectangle(rgbImg, select, Scalar(0, 255, 0), 3, 2); //用矩形画矩形窗
			drawContours(dst, con, -1, Scalar(0, 0, 255), 2); //最大面积红色绘制
		}
		else
			drawContours(dst, con, -1, Scalar(255, 0, 0), 2); //其它面积蓝色绘制
		con.pop_back();
		//计算质心
		mom = moments(*itr);
		center.x = (int)(mom.m10 / mom.m00);
		center.y = (int)(mom.m01 / mom.m00);
		centers.push_back(center);
		itr++;
	}
	imshow("rgbImg", rgbImg);
	//imshow("gray", gray);
	//imshow("edge", edge);
	imshow("origin", image);
	imshow("connected_region", dst);
	waitKey(0);
	return;
}

前期做的,方法可能不太一样

一,先看效果图

原图

使用OpenCV去除面积较小的连通域

处理前后图

使用OpenCV去除面积较小的连通域

二,实现源代码

//=======函数实现=====================================================================
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
	int RemoveCount = 0;
	//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查 
	//初始化的图像全部为0,未检查 
	Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);
	if (CheckMode == 1)//去除小连通区域的白色点 
	{
		//cout << "去除小连通域.";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) < 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3 
				}
			}
		}
	}
	else//去除孔洞,黑色点像素 
	{
		//cout << "去除孔洞";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) > 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3 
				}
			}
		}
	}
	vector<Point2i>NeihborPos;//将邻域压进容器 
	NeihborPos.push_back(Point2i(-1, 0));
	NeihborPos.push_back(Point2i(1, 0));
	NeihborPos.push_back(Point2i(0, -1));
	NeihborPos.push_back(Point2i(0, 1));
	if (NeihborMode == 1)
	{
		//cout << "Neighbor mode: 8邻域." << endl;
		NeihborPos.push_back(Point2i(-1, -1));
		NeihborPos.push_back(Point2i(-1, 1));
		NeihborPos.push_back(Point2i(1, -1));
		NeihborPos.push_back(Point2i(1, 1));
	}
	else int a = 0;//cout << "Neighbor mode: 4邻域." << endl;
	int NeihborCount = 4 + 4 * NeihborMode;
	int CurrX = 0, CurrY = 0;
	//开始检测 
	for (int i = 0; i < Src.rows; i++)
	{
		for (int j = 0; j < Src.cols; j++)
		{
			if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点 
			{ //开始检查 
				vector<Point2i>GrowBuffer;//记录检查像素点的个数 
				GrowBuffer.push_back(Point2i(j, i));
				PointLabel.at<uchar>(i, j) = 1;//标记为正在检查 
				int CheckResult = 0;
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					for (int q = 0; q < NeihborCount; q++)
					{
						CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;
						CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;
						if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows) //防止越界 
						{
							if (PointLabel.at<uchar>(CurrY, CurrX) == 0)
							{
								GrowBuffer.push_back(Point2i(CurrX, CurrY)); //邻域点加入buffer 
								PointLabel.at<uchar>(CurrY, CurrX) = 1;   //更新邻域点的检查标签,避免重复检查 
							}
						}
					}
				}
				if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出 
					CheckResult = 2;
				else
				{
					CheckResult = 1;
					RemoveCount++;//记录有多少区域被去除 
				}
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					CurrX = GrowBuffer.at(z).x;
					CurrY = GrowBuffer.at(z).y;
					PointLabel.at<uchar>(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2 
				}
				//********结束该点处的检查********** 
			}
		}
	}
	CheckMode = 255 * (1 - CheckMode);
	//开始反转面积过小的区域 
	for (int i = 0; i < Src.rows; ++i)
	{
		for (int j = 0; j < Src.cols; ++j)
		{
			if (PointLabel.at<uchar>(i, j) == 2)
			{
				Dst.at<uchar>(i, j) = CheckMode;
			}
			else if (PointLabel.at<uchar>(i, j) == 3)
			{
				Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);
			}
		}
	}
	//cout << RemoveCount << " objects removed." << endl;
}
//=======函数实现=====================================================================
//=======调用函数=====================================================================
	Mat img;
	img = imread("D:\\1_1.jpg", 0);//读取图片
	threshold(img, img, 128, 255, CV_THRESH_BINARY_INV);
	imshow("去除前", img);
	Mat img1;
	RemoveSmallRegion(img, img, 200, 0, 1);
	imshow("去除后", img);
	waitKey(0);
//=======调用函数=====================================================================

以上这篇使用OpenCV去除面积较小的连通域就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
在Python中使用pngquant压缩png图片的教程
Apr 09 Python
Python网络爬虫实例讲解
Apr 28 Python
python3 破解 geetest(极验)的滑块验证码功能
Feb 24 Python
python 编码规范整理
May 05 Python
python自动发送邮件脚本
Jun 20 Python
pandas的唯一值、值计数以及成员资格的示例
Jul 25 Python
python 使用sys.stdin和fileinput读入标准输入的方法
Oct 17 Python
在Python中获取两数相除的商和余数方法
Nov 10 Python
python正向最大匹配分词和逆向最大匹配分词的实例
Nov 14 Python
用Python实现大文本文件切割的方法
Jan 12 Python
详解PyTorch手写数字识别(MNIST数据集)
Aug 16 Python
pandas to_excel 添加颜色操作
Jul 14 Python
学python最电脑配置有要求么
Jul 05 #Python
浅谈OpenCV中的新函数connectedComponentsWithStats用法
Jul 05 #Python
python怎么对数字进行过滤
Jul 05 #Python
python主要用于哪些方向
Jul 05 #Python
python右对齐的实例方法
Jul 05 #Python
使用Python-OpenCV消除图像中孤立的小区域操作
Jul 05 #Python
python使用opencv resize图像不进行插值的操作
Jul 05 #Python
You might like
php 魔术方法详解
2014/11/11 PHP
php实现将数组转换为XML的方法
2015/03/09 PHP
PHP使用socket发送HTTP请求的方法
2016/02/14 PHP
使用PHP处理数据库数据如何将数据返回客户端并显示当前状态
2016/02/16 PHP
PHP使用mysql与mysqli连接Mysql数据库用法示例
2016/07/07 PHP
php 三元运算符实例详细介绍
2016/12/15 PHP
jQuery创建自己的插件(自定义插件)的方法
2010/06/10 Javascript
javascript实现自动输出文本(打字特效)
2015/08/27 Javascript
prototype.js常用函数详解
2016/06/18 Javascript
jQuery实现表格行和列的动态添加与删除方法【测试可用】
2016/08/01 Javascript
微信小程序加载更多 点击查看更多
2016/11/29 Javascript
原生js实现可拖动的登录框效果
2017/01/21 Javascript
ES6中Math对象新增的方法实例详解
2017/04/25 Javascript
微信小程序 蓝牙的实现实例代码
2017/06/27 Javascript
Node.js使用gm拼装sprite图片
2017/07/04 Javascript
利用JS hash制作单页Web应用的方法详解
2017/10/10 Javascript
Element-ui table中过滤条件变更表格内容的方法
2018/03/02 Javascript
详解Puppeteer前端自动化测试实践
2019/02/21 Javascript
通过说明与示例了解js五种设计模式
2019/06/17 Javascript
详解ES6数组方法find()、findIndex()的总结
2020/05/12 Javascript
[03:38]TI4西雅图DOTA2前线报道 71专访
2014/07/08 DOTA
python网络编程之文件下载实例分析
2015/05/20 Python
Python PyQt5标准对话框用法示例
2017/08/23 Python
Python类的继承用法示例
2019/01/31 Python
英国领先的酒类网上商城:TheDrinkShop
2017/03/16 全球购物
公司市场部岗位职责
2013/12/02 职场文书
留学生求职信
2014/06/03 职场文书
法人代表任命书范本
2014/06/05 职场文书
2014离婚协议书范文两篇
2014/09/15 职场文书
小班教师个人总结
2015/02/05 职场文书
2015个人半年总结范文
2015/03/09 职场文书
庆祝教师节活动总结
2015/03/23 职场文书
学校运动会简讯
2015/07/20 职场文书
2015教师个人德育工作总结
2015/07/22 职场文书
一文读懂navicat for mysql基础知识
2021/05/31 MySQL
node.js如何自定义实现一个EventEmitter
2021/07/16 Javascript