使用OpenCV去除面积较小的连通域


Posted in Python onJuly 05, 2020

这是后期补充的部分,和前期的代码不太一样

效果图

使用OpenCV去除面积较小的连通域

源代码

//测试
void CCutImageVS2013Dlg::OnBnClickedTestButton1()
{
	vector<vector<Point> > contours;  //轮廓数组
	vector<Point2d> centers;    //轮廓质心坐标 
	vector<vector<Point> >::iterator itr; //轮廓迭代器
	vector<Point2d>::iterator itrc;  //质心坐标迭代器
	vector<vector<Point> > con;   //当前轮廓

	double area;
	double minarea = 1000;
	double maxarea = 0;
	Moments mom;       // 轮廓矩
	Mat image, gray, edge, dst;
	image = imread("D:\\66.png");
	cvtColor(image, gray, COLOR_BGR2GRAY);
	Mat rgbImg(gray.size(), CV_8UC3); //创建三通道图
	blur(gray, edge, Size(3, 3));       //模糊去噪
	threshold(edge, edge, 200, 255, THRESH_BINARY_INV); //二值化处理,黑底白字
	//--------去除较小轮廓,并寻找最大轮廓--------------------------
	findContours(edge, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE); //寻找轮廓
	itr = contours.begin();    //使用迭代器去除噪声轮廓
	while (itr != contours.end())
	{
		area = contourArea(*itr);  //获得轮廓面积
		if (area<minarea)    //删除较小面积的轮廓 
		{
			itr = contours.erase(itr); //itr一旦erase,需要重新赋值
		}
		else
		{
			itr++;
		}
		if (area>maxarea)    //寻找最大轮廓
		{
			maxarea = area;
		}
	}
	dst = Mat::zeros(image.rows, image.cols, CV_8UC3);
	/*绘制连通区域轮廓,计算质心坐标*/
	Point2d center;
	itr = contours.begin();
	while (itr != contours.end())
	{
		area = contourArea(*itr);		
		con.push_back(*itr);   //获取当前轮廓
		if (area == maxarea)
		{
			vector<Rect> boundRect(1); //定义外接矩形集合
			boundRect[0] = boundingRect(Mat(*itr));
			cvtColor(gray, rgbImg, COLOR_GRAY2BGR);
			Rect select;
			select.x = boundRect[0].x;
			select.y = boundRect[0].y;
			select.width = boundRect[0].width;
			select.height = boundRect[0].height;
			rectangle(rgbImg, select, Scalar(0, 255, 0), 3, 2); //用矩形画矩形窗
			drawContours(dst, con, -1, Scalar(0, 0, 255), 2); //最大面积红色绘制
		}
		else
			drawContours(dst, con, -1, Scalar(255, 0, 0), 2); //其它面积蓝色绘制
		con.pop_back();
		//计算质心
		mom = moments(*itr);
		center.x = (int)(mom.m10 / mom.m00);
		center.y = (int)(mom.m01 / mom.m00);
		centers.push_back(center);
		itr++;
	}
	imshow("rgbImg", rgbImg);
	//imshow("gray", gray);
	//imshow("edge", edge);
	imshow("origin", image);
	imshow("connected_region", dst);
	waitKey(0);
	return;
}

前期做的,方法可能不太一样

一,先看效果图

原图

使用OpenCV去除面积较小的连通域

处理前后图

使用OpenCV去除面积较小的连通域

二,实现源代码

//=======函数实现=====================================================================
void RemoveSmallRegion(Mat &Src, Mat &Dst, int AreaLimit, int CheckMode, int NeihborMode)
{
	int RemoveCount = 0;
	//新建一幅标签图像初始化为0像素点,为了记录每个像素点检验状态的标签,0代表未检查,1代表正在检查,2代表检查不合格(需要反转颜色),3代表检查合格或不需检查 
	//初始化的图像全部为0,未检查 
	Mat PointLabel = Mat::zeros(Src.size(), CV_8UC1);
	if (CheckMode == 1)//去除小连通区域的白色点 
	{
		//cout << "去除小连通域.";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) < 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//将背景黑色点标记为合格,像素为3 
				}
			}
		}
	}
	else//去除孔洞,黑色点像素 
	{
		//cout << "去除孔洞";
		for (int i = 0; i < Src.rows; i++)
		{
			for (int j = 0; j < Src.cols; j++)
			{
				if (Src.at<uchar>(i, j) > 10)
				{
					PointLabel.at<uchar>(i, j) = 3;//如果原图是白色区域,标记为合格,像素为3 
				}
			}
		}
	}
	vector<Point2i>NeihborPos;//将邻域压进容器 
	NeihborPos.push_back(Point2i(-1, 0));
	NeihborPos.push_back(Point2i(1, 0));
	NeihborPos.push_back(Point2i(0, -1));
	NeihborPos.push_back(Point2i(0, 1));
	if (NeihborMode == 1)
	{
		//cout << "Neighbor mode: 8邻域." << endl;
		NeihborPos.push_back(Point2i(-1, -1));
		NeihborPos.push_back(Point2i(-1, 1));
		NeihborPos.push_back(Point2i(1, -1));
		NeihborPos.push_back(Point2i(1, 1));
	}
	else int a = 0;//cout << "Neighbor mode: 4邻域." << endl;
	int NeihborCount = 4 + 4 * NeihborMode;
	int CurrX = 0, CurrY = 0;
	//开始检测 
	for (int i = 0; i < Src.rows; i++)
	{
		for (int j = 0; j < Src.cols; j++)
		{
			if (PointLabel.at<uchar>(i, j) == 0)//标签图像像素点为0,表示还未检查的不合格点 
			{ //开始检查 
				vector<Point2i>GrowBuffer;//记录检查像素点的个数 
				GrowBuffer.push_back(Point2i(j, i));
				PointLabel.at<uchar>(i, j) = 1;//标记为正在检查 
				int CheckResult = 0;
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					for (int q = 0; q < NeihborCount; q++)
					{
						CurrX = GrowBuffer.at(z).x + NeihborPos.at(q).x;
						CurrY = GrowBuffer.at(z).y + NeihborPos.at(q).y;
						if (CurrX >= 0 && CurrX<Src.cols&&CurrY >= 0 && CurrY<Src.rows) //防止越界 
						{
							if (PointLabel.at<uchar>(CurrY, CurrX) == 0)
							{
								GrowBuffer.push_back(Point2i(CurrX, CurrY)); //邻域点加入buffer 
								PointLabel.at<uchar>(CurrY, CurrX) = 1;   //更新邻域点的检查标签,避免重复检查 
							}
						}
					}
				}
				if (GrowBuffer.size()>AreaLimit) //判断结果(是否超出限定的大小),1为未超出,2为超出 
					CheckResult = 2;
				else
				{
					CheckResult = 1;
					RemoveCount++;//记录有多少区域被去除 
				}
				for (int z = 0; z < GrowBuffer.size(); z++)
				{
					CurrX = GrowBuffer.at(z).x;
					CurrY = GrowBuffer.at(z).y;
					PointLabel.at<uchar>(CurrY, CurrX) += CheckResult;//标记不合格的像素点,像素值为2 
				}
				//********结束该点处的检查********** 
			}
		}
	}
	CheckMode = 255 * (1 - CheckMode);
	//开始反转面积过小的区域 
	for (int i = 0; i < Src.rows; ++i)
	{
		for (int j = 0; j < Src.cols; ++j)
		{
			if (PointLabel.at<uchar>(i, j) == 2)
			{
				Dst.at<uchar>(i, j) = CheckMode;
			}
			else if (PointLabel.at<uchar>(i, j) == 3)
			{
				Dst.at<uchar>(i, j) = Src.at<uchar>(i, j);
			}
		}
	}
	//cout << RemoveCount << " objects removed." << endl;
}
//=======函数实现=====================================================================
//=======调用函数=====================================================================
	Mat img;
	img = imread("D:\\1_1.jpg", 0);//读取图片
	threshold(img, img, 128, 255, CV_THRESH_BINARY_INV);
	imshow("去除前", img);
	Mat img1;
	RemoveSmallRegion(img, img, 200, 0, 1);
	imshow("去除后", img);
	waitKey(0);
//=======调用函数=====================================================================

以上这篇使用OpenCV去除面积较小的连通域就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python中查看变量内存地址的方法
May 05 Python
简单实现python爬虫功能
Dec 31 Python
python shell根据ip获取主机名代码示例
Nov 25 Python
python初学之用户登录的实现过程(实例讲解)
Dec 23 Python
用python处理图片实现图像中的像素访问
May 04 Python
使用Python微信库itchat获得好友和群组已撤回的消息
Jun 24 Python
将Dataframe数据转化为ndarry数据的方法
Jun 28 Python
Python抽象和自定义类定义与用法示例
Aug 23 Python
Flask框架web开发之零基础入门
Dec 10 Python
python滑块验证码的破解实现
Nov 10 Python
Python实现井字棋小游戏
Mar 09 Python
python shapely.geometry.polygon任意两个四边形的IOU计算实例
Apr 12 Python
学python最电脑配置有要求么
Jul 05 #Python
浅谈OpenCV中的新函数connectedComponentsWithStats用法
Jul 05 #Python
python怎么对数字进行过滤
Jul 05 #Python
python主要用于哪些方向
Jul 05 #Python
python右对齐的实例方法
Jul 05 #Python
使用Python-OpenCV消除图像中孤立的小区域操作
Jul 05 #Python
python使用opencv resize图像不进行插值的操作
Jul 05 #Python
You might like
ThinkPHP查询中的魔术方法简述
2014/06/25 PHP
php文件夹的创建与删除方法
2015/01/24 PHP
PHP生成json和xml类型接口数据格式
2015/05/17 PHP
Zend Framework教程之Zend_Helpers动作助手ViewRenderer用法详解
2016/07/20 PHP
PHP面向对象之领域模型+数据映射器实例(分析)
2017/06/21 PHP
Mootools 1.2 手风琴(Accordion)教程
2009/09/15 Javascript
javascript实现的HashMap类代码
2014/06/27 Javascript
Node.js抓取中文网页乱码问题和解决方法
2015/02/10 Javascript
浅析Node.js中使用依赖注入的相关问题及解决方法
2015/06/24 Javascript
jQuery插件实现带圆点的焦点图片轮播切换
2016/01/18 Javascript
js滑动提示效果代码分享
2016/03/10 Javascript
完美实现八种js焦点轮播图(下篇)
2020/04/20 Javascript
Bootstrap实现带暂停功能的轮播组件(推荐)
2016/11/25 Javascript
详解js的异步编程技术的方法
2017/02/09 Javascript
nodeJS实现路由功能实例代码
2017/06/08 NodeJs
详解vue-cli 快速搭建单页应用之遇到的问题及解决办法
2018/03/01 Javascript
Vue实现 点击显示再点击隐藏效果(点击页面空白区域也隐藏效果)
2020/01/16 Javascript
vue打开子组件弹窗都刷新功能的实现
2020/09/21 Javascript
Python cookbook(数据结构与算法)实现优先级队列的方法示例
2018/02/18 Python
python如何实现内容写在图片上
2018/03/23 Python
在Python 不同级目录之间模块的调用方法
2019/01/19 Python
python requests更换代理适用于IP频率限制的方法
2019/08/21 Python
在python中实现求输出1-3+5-7+9-......101的和
2020/04/02 Python
详解用python -m http.server搭一个简易的本地局域网
2020/09/24 Python
HTML5里的placeholder属性使用实例和美化显示效果的方法
2014/04/23 HTML / CSS
Seavenger官网:潜水服、浮潜、靴子和袜子
2020/03/05 全球购物
事业单位辞职信范文
2014/01/19 职场文书
买房委托公证书
2014/04/08 职场文书
保安公司服务承诺书
2014/05/28 职场文书
校车安全责任书
2014/08/25 职场文书
民主生活会汇报材料
2014/12/15 职场文书
领导干部考核评语
2015/01/04 职场文书
水电工岗位职责
2015/02/14 职场文书
施工员岗位职责范本
2015/04/11 职场文书
广告公司文案策划岗位职责
2015/04/14 职场文书
Win10服务主机占用内存怎么办?Win10服务主机进程占用大量内存解决方法
2022/09/23 数码科技