Python常见的pandas用法demo示例


Posted in Python onMarch 16, 2019

本文实例总结了Python常见的pandas用法。分享给大家供大家参考,具体如下:

import numpy as np
import pandas as pd
s = pd.Series([1,3,6, np.nan, 44, 1]) #定义一个序列。 序列就是一列内容,每一行有一个index值
print(s)
print(s.index)

0     1.0
1     3.0
2     6.0
3     NaN
4    44.0
5     1.0
dtype: float64
RangeIndex(start=0, stop=6, step=1)

dates = pd.date_range('20180101', periods=6)
print(dates)

DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',
               '2018-01-05', '2018-01-06'],
              dtype='datetime64[ns]', freq='D')

df1 = pd.DataFrame(np.arange(12).reshape(3,4)) #定义DataFrame,可以看作一个有index和colunms的矩阵
print(df)

   0  1   2   3
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

df2 = pd.DataFrame(np.random.randn(6,4), index=dates, columns=['a', 'b', 'c', 'd']) #np.random.randn(6,4)生成6行4列矩阵
print(df)

                   a         b         c         d
2018-01-01  0.300675  1.769383  1.244406 -1.058294
2018-01-02  0.832666  2.216755  0.178716 -0.156828
2018-01-03  1.314190 -0.866199  0.836150  1.001026
2018-01-04 -1.671724  1.147406 -0.148676 -0.272555
2018-01-05  1.146664  2.022861 -1.833995 -0.627568
2018-01-06 -0.192242  1.517676  0.756707  0.058869

df = pd.DataFrame({'A':1.0,
          'B':pd.Timestamp('20180101'),
          'C':pd.Series(1, index=list(range(4)), dtype='float32'),
          'D':np.array([3] * 4, dtype='int32'),
          'E':pd.Categorical(['test', 'train', 'test', 'train']),
          'F':'foo'}) #按照给出的逐列定义df

print(df)
print(df.dtypes)

     A          B    C  D      E    F
0  1.0 2018-01-01  1.0  3   test  foo
1  1.0 2018-01-01  1.0  3  train  foo
2  1.0 2018-01-01  1.0  3   test  foo
3  1.0 2018-01-01  1.0  3  train  foo
A           float64
B    datetime64[ns]
C           float32
D             int32
E          category
F            object
dtype: object

#df的行、列、值
print(df.index)
print(df.columns)
print(df.values)

Int64Index([0, 1, 2, 3], dtype='int64')
Index(['A', 'B', 'C', 'D', 'E', 'F'], dtype='object')
[[1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'test' 'foo']
 [1.0 Timestamp('2018-01-01 00:00:00') 1.0 3 'train' 'foo']]

print(df.describe()) #统计
print(df.T) #转置

         A    C    D
count  4.0  4.0  4.0
mean   1.0  1.0  3.0
std    0.0  0.0  0.0
min    1.0  1.0  3.0
25%    1.0  1.0  3.0
50%    1.0  1.0  3.0
75%    1.0  1.0  3.0
max    1.0  1.0  3.0
                     0                    1                    2  \
A                    1                    1                    1
B  2018-01-01 00:00:00  2018-01-01 00:00:00  2018-01-01 00:00:00
C                    1                    1                    1
D                    3                    3                    3
E                 test                train                 test
F                  foo                  foo                  foo
                     3
A                    1
B  2018-01-01 00:00:00
C                    1
D                    3
E                train
F                  foo

#df排序
print(df.sort_index(axis=1, ascending=False)) #根据索引值对各行进行排序(相当于重新排列各列的位置)
print(df.sort_values(by='E')) #根据内容值对各列进行排序

     F      E  D    C          B    A
0  foo   test  3  1.0 2018-01-01  1.0
1  foo  train  3  1.0 2018-01-01  1.0
2  foo   test  3  1.0 2018-01-01  1.0
3  foo  train  3  1.0 2018-01-01  1.0
     A          B    C  D      E    F
0  1.0 2018-01-01  1.0  3   test  foo
2  1.0 2018-01-01  1.0  3   test  foo
1  1.0 2018-01-01  1.0  3  train  foo
3  1.0 2018-01-01  1.0  3  train  foo

indexes = pd.date_range('20180101', periods=6)
df3 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes, columns=['A', 'B', 'C', 'D'])
print(df3)
print()
#选择column
print(df3['A'])
print()
print(df3.A)

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
2018-01-01     0
2018-01-02     4
2018-01-03     8
2018-01-04    12
2018-01-05    16
2018-01-06    20
Freq: D, Name: A, dtype: int32
2018-01-01     0
2018-01-02     4
2018-01-03     8
2018-01-04    12
2018-01-05    16
2018-01-06    20
Freq: D, Name: A, dtype: int32
            A  B   C   D
2018-01-01  0  1   2   3
2018-01-02  4  5   6   7
2018-01-03  8  9  10  11

#选择行, 类似limit语句
print(df3[0:0])
print()
print(df3[0:3])
print()
print(df3['20180103':'20180105'])

Empty DataFrame
Columns: [A, B, C, D]
Index: []
            A  B   C   D
2018-01-01  0  1   2   3
2018-01-02  4  5   6   7
2018-01-03  8  9  10  11
             A   B   C   D
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19

print(df3.loc['20180102']) #返回指定行构成的序列

A    4
B    5
C    6
D    7
Name: 2018-01-02 00:00:00, dtype: int32

print(df3.loc['20180103', ['A','C']]) #列筛选
print()
print(df3.loc['20180103':'20180105', ['A','C']]) #子df,类似select A, C from df limit ...
print()
print(df3.loc[:, ['A', 'B']])

A     8
C    10
Name: 2018-01-03 00:00:00, dtype: int32
             A   C
2018-01-03   8  10
2018-01-04  12  14
2018-01-05  16  18
             A   B
2018-01-01   0   1
2018-01-02   4   5
2018-01-03   8   9
2018-01-04  12  13
2018-01-05  16  17
2018-01-06  20  21

print(df3);print()
print(df3.iloc[1]);print()
print(df3.iloc[1,1]);print()
print(df3.iloc[:,1]);print()
print(df3.iloc[0:3,1:3]);print()
print(df3.iloc[[1,3,5],[0,2]]) #行可以不连续,limit做不到

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
A    4
B    5
C    6
D    7
Name: 2018-01-02 00:00:00, dtype: int32
5
2018-01-01     1
2018-01-02     5
2018-01-03     9
2018-01-04    13
2018-01-05    17
2018-01-06    21
Freq: D, Name: B, dtype: int32
            B   C
2018-01-01  1   2
2018-01-02  5   6
2018-01-03  9  10
             A   C
2018-01-02   4   6
2018-01-04  12  14
2018-01-06  20  22

# print(df3.ix[:3, ['A', 'C']])\
print(df3);print()
print(df3[df3.A >= 8]) #根据值进行条件过滤,类似where A >= 8条件语句

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
             A   B   C   D
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23

indexes1 = pd.date_range('20180101', periods=6)
df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])
print(df4);print()
#给某个元素赋值
df4.A[1] = 1111
df4.B['20180103'] = 2222
df4.iloc[3, 2] = 3333
df4.loc['20180105', 'D'] = 4444
print(df4);print()
#范围赋值
df4.B[df4.A < 10] = -1
print(df4);print()
df4[df4.A < 10] = 0
print(df4);print()

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
               A     B     C     D
2018-01-01     0     1     2     3
2018-01-02  1111     5     6     7
2018-01-03     8  2222    10    11
2018-01-04    12    13  3333    15
2018-01-05    16    17    18  4444
2018-01-06    20    21    22    23
               A   B     C     D
2018-01-01     0  -1     2     3
2018-01-02  1111   5     6     7
2018-01-03     8  -1    10    11
2018-01-04    12  13  3333    15
2018-01-05    16  17    18  4444
2018-01-06    20  21    22    23
               A   B     C     D
2018-01-01     0   0     0     0
2018-01-02  1111   5     6     7
2018-01-03     0   0     0     0
2018-01-04    12  13  3333    15
2018-01-05    16  17    18  4444
2018-01-06    20  21    22    23

indexes1 = pd.date_range('20180101', periods=6)
df4 = pd.DataFrame(np.arange(24).reshape(6, 4), index=indexes1, columns=['A', 'B', 'C', 'D'])
print(df4);print()
#添加一列
df4['E'] = np.NaN
print(df4);print()
#由于index没对齐,原df没有的行默认为NaN,类型为float64,多出的行丢弃
df4['F'] = pd.Series([1,2,3,4,5,6], index=pd.date_range('20180102', periods=6))
print(df4);print()
print(df4.dtypes)

             A   B   C   D
2018-01-01   0   1   2   3
2018-01-02   4   5   6   7
2018-01-03   8   9  10  11
2018-01-04  12  13  14  15
2018-01-05  16  17  18  19
2018-01-06  20  21  22  23
             A   B   C   D   E
2018-01-01   0   1   2   3 NaN
2018-01-02   4   5   6   7 NaN
2018-01-03   8   9  10  11 NaN
2018-01-04  12  13  14  15 NaN
2018-01-05  16  17  18  19 NaN
2018-01-06  20  21  22  23 NaN
             A   B   C   D   E    F
2018-01-01   0   1   2   3 NaN  NaN
2018-01-02   4   5   6   7 NaN  1.0
2018-01-03   8   9  10  11 NaN  2.0
2018-01-04  12  13  14  15 NaN  3.0
2018-01-05  16  17  18  19 NaN  4.0
2018-01-06  20  21  22  23 NaN  5.0
A      int32
B      int32
C      int32
D      int32
E    float64
F    float64
dtype: object

df_t = pd.DataFrame(np.arange(24).reshape(6, 4), index=[1,2,3,4,5,6], columns=['A', 'B', 'C', 'D'])
df_t.iloc[0, 1] = np.NaN
df_t.iloc[1, 2] = np.NaN
df = df_t.copy()
print(df);print()
print(df.dropna(axis=0, how='any'));print()
df = df_t.copy()
print(df.dropna(axis=1, how='any'));print()
df = df_t.copy()
df.C = np.NaN
print(df);print()
print(df.dropna(axis=1, how='all'));print()

    A     B     C   D
1   0   NaN   2.0   3
2   4   5.0   NaN   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
    A     B     C   D
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
    A   D
1   0   3
2   4   7
3   8  11
4  12  15
5  16  19
6  20  23
    A     B   C   D
1   0   NaN NaN   3
2   4   5.0 NaN   7
3   8   9.0 NaN  11
4  12  13.0 NaN  15
5  16  17.0 NaN  19
6  20  21.0 NaN  23
    A     B   D
1   0   NaN   3
2   4   5.0   7
3   8   9.0  11
4  12  13.0  15
5  16  17.0  19
6  20  21.0  23

df = df_t.copy()
print(df);print()
print(df.isna());print()
print(df.isnull().any());print() #isnull是isna别名,功能一样
print(df.isnull().any(axis=1));print()
print(np.any(df.isna() == True));print()
print(df.fillna(value=0)) #将NaN赋值

    A     B     C   D
1   0   NaN   2.0   3
2   4   5.0   NaN   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23
       A      B      C      D
1  False   True  False  False
2  False  False   True  False
3  False  False  False  False
4  False  False  False  False
5  False  False  False  False
6  False  False  False  False
A    False
B     True
C     True
D    False
dtype: bool
1     True
2     True
3    False
4    False
5    False
6    False
dtype: bool
True
    A     B     C   D
1   0   0.0   2.0   3
2   4   5.0   0.0   7
3   8   9.0  10.0  11
4  12  13.0  14.0  15
5  16  17.0  18.0  19
6  20  21.0  22.0  23

data = pd.read_csv('D:/pythonwp/test/student.csv')
print(data)
data.to_pickle('D:/pythonwp/test/student.pickle')

   id     name  age  gender
0   1       牛帅   23    Male
1   2      gyb   89    Male
2   3      xxs   27    Male
3   4      hey   24  Female
4   5    奥莱利赫本   66  Female
5   6  Jackson   61    Male
6   7       牛帅   23    Male

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['A', 'B', 'C', 'D'])
df2 = pd.DataFrame(np.ones((3, 4)) * 2, columns=['A', 'B', 'C', 'D'])
print(df0); print()
print(df1); print()
print(df2); print()
res = pd.concat([df0, df1, df2], axis = 0)
print(res); print()
res = pd.concat([df0, df1, df2], axis = 0, ignore_index=True)
print(res)

     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
     A    B    C    D
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
     A    B    C    D
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
0  1.0  1.0  1.0  1.0
1  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
0  2.0  2.0  2.0  2.0
1  2.0  2.0  2.0  2.0
2  2.0  2.0  2.0  2.0
     A    B    C    D
0  0.0  0.0  0.0  0.0
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
5  1.0  1.0  1.0  1.0
6  2.0  2.0  2.0  2.0
7  2.0  2.0  2.0  2.0
8  2.0  2.0  2.0  2.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, columns=['E', 'F', 'C', 'D'])
res = pd.concat([df0, df1], ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], join='outer', ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], join='inner',ignore_index=True)
print(res);print()

     A    B    C    D    E    F
0  0.0  0.0  0.0  0.0  NaN  NaN
1  0.0  0.0  0.0  0.0  NaN  NaN
2  0.0  0.0  0.0  0.0  NaN  NaN
3  NaN  NaN  1.0  1.0  1.0  1.0
4  NaN  NaN  1.0  1.0  1.0  1.0
5  NaN  NaN  1.0  1.0  1.0  1.0
     A    B    C    D    E    F
0  0.0  0.0  0.0  0.0  NaN  NaN
1  0.0  0.0  0.0  0.0  NaN  NaN
2  0.0  0.0  0.0  0.0  NaN  NaN
3  NaN  NaN  1.0  1.0  1.0  1.0
4  NaN  NaN  1.0  1.0  1.0  1.0
5  NaN  NaN  1.0  1.0  1.0  1.0
     C    D
0  0.0  0.0
1  0.0  0.0
2  0.0  0.0
3  1.0  1.0
4  1.0  1.0
5  1.0  1.0

#横向合并
df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])
print(df0);print()
print(df1);print()
res = pd.concat([df0, df1], axis=1)
print(res);print()
res = pd.concat([df0, df1], axis=1, join='inner', ignore_index=True)
print(res);print()
res = pd.concat([df0, df1], axis=1, join_axes=[df0.index])
print(res);print()

     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
     A    B    C    D
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D    A    B    C    D
1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
4  NaN  NaN  NaN  NaN  1.0  1.0  1.0  1.0
     0    1    2    3    4    5    6    7
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
     A    B    C    D    A    B    C    D
1  0.0  0.0  0.0  0.0  NaN  NaN  NaN  NaN
2  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0
3  0.0  0.0  0.0  0.0  1.0  1.0  1.0  1.0

df0 = pd.DataFrame(np.ones((3, 4)) * 0, index=['1', '2', '3'], columns=['A', 'B', 'C', 'D'])
df1 = pd.DataFrame(np.ones((3, 4)) * 1, index=['2', '3', '4'], columns=['A', 'B', 'C', 'D'])
print(df0);print()
print(df1);print()
res = df0.append([df1, df1], ignore_index=False)
print(res);print()
s = pd.Series([1,2,3,4], index=['A','B','C','E'])
print(df0.append(s, ignore_index=True))

     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
     A    B    C    D
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D
1  0.0  0.0  0.0  0.0
2  0.0  0.0  0.0  0.0
3  0.0  0.0  0.0  0.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
2  1.0  1.0  1.0  1.0
3  1.0  1.0  1.0  1.0
4  1.0  1.0  1.0  1.0
     A    B    C    D    E
0  0.0  0.0  0.0  0.0  NaN
1  0.0  0.0  0.0  0.0  NaN
2  0.0  0.0  0.0  0.0  NaN
3  1.0  2.0  3.0  NaN  4.0

df1 = pd.DataFrame({'key':['K0', 'K1', 'K2'],
          'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']})
df2 = pd.DataFrame({'key':['K3', 'K1', 'K2'],
          'C':['C3', 'C1', 'C2'],
          'D':['D3', 'D1', 'D2']})
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, on='key')
print(res); print()
res = pd.merge(df1, df2, on='key', how='outer')
print(res); print()
res = pd.merge(df1, df2, on='key', how='left')
print(res); print()
res = pd.merge(df1, df2, on='key', how='right')
print(res); print()

    A   B key
0  A0  B0  K0
1  A1  B1  K1
2  A2  B2  K2
    C   D key
0  C3  D3  K3
1  C1  D1  K1
2  C2  D2  K2
    A   B key   C   D
0  A1  B1  K1  C1  D1
1  A2  B2  K2  C2  D2
     A    B key    C    D
0   A0   B0  K0  NaN  NaN
1   A1   B1  K1   C1   D1
2   A2   B2  K2   C2   D2
3  NaN  NaN  K3   C3   D3
    A   B key    C    D
0  A0  B0  K0  NaN  NaN
1  A1  B1  K1   C1   D1
2  A2  B2  K2   C2   D2
     A    B key   C   D
0   A1   B1  K1  C1  D1
1   A2   B2  K2  C2  D2
2  NaN  NaN  K3  C3  D3

df1 = pd.DataFrame({'key1':['K0', 'K0', 'K1'],
          'key2':['K0', 'K1', 'K1'],
          'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']})
df2 = pd.DataFrame({'key1':['K0', 'K0', 'K1', 'K2'],
          'key2':['K0', 'K0', 'K1', 'K2'],
          'C':['C3', 'C1', 'C2', 'C4'],
          'D':['D3', 'D1', 'D2', 'D4']})
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, on=['key1','key2'])
print(res); print()
res = pd.merge(df1, df2, on=['key1','key2'], how='outer', indicator='indi')
print(res); print()

    A   B key1 key2
0  A0  B0   K0   K0
1  A1  B1   K0   K1
2  A2  B2   K1   K1
    C   D key1 key2
0  C3  D3   K0   K0
1  C1  D1   K0   K0
2  C2  D2   K1   K1
3  C4  D4   K2   K2
    A   B key1 key2   C   D
0  A0  B0   K0   K0  C3  D3
1  A0  B0   K0   K0  C1  D1
2  A2  B2   K1   K1  C2  D2
     A    B key1 key2    C    D        indi
0   A0   B0   K0   K0   C3   D3        both
1   A0   B0   K0   K0   C1   D1        both
2   A1   B1   K0   K1  NaN  NaN   left_only
3   A2   B2   K1   K1   C2   D2        both
4  NaN  NaN   K2   K2   C4   D4  right_only

#以上是根据值合并。下面根据index合并
df1 = pd.DataFrame({'A':['A0', 'A1', 'A2'],
          'B':['B0', 'B1', 'B2']},
          index=['index0', 'index1', 'index2'])
df2 = pd.DataFrame({'A':['C3', 'C1', 'C2'],
          'D':['D3', 'D1', 'D2']},
          index=['index3', 'index1', 'index2'])
print(df1); print()
print(df2); print()
res = pd.merge(df1, df2, left_index=True, right_index=True)
print(res); print()
res = pd.merge(df1, df2, left_index=True, right_index=True, how='outer', suffixes=['_b', '_g'])
print(res); print()

         A   B
index0  A0  B0
index1  A1  B1
index2  A2  B2
         A   D
index3  C3  D3
index1  C1  D1
index2  C2  D2
       A_x   B A_y   D
index1  A1  B1  C1  D1
index2  A2  B2  C2  D2
        A_b    B  A_g    D
index0   A0   B0  NaN  NaN
index1   A1   B1   C1   D1
index2   A2   B2   C2   D2
index3  NaN  NaN   C3   D3

res = df1.join(df2, how='outer', lsuffix='_left', rsuffix='_right') #不用on默认用索引合并
print(res);print()
res = df1.join(df2, on='B', how='outer', lsuffix='_left', rsuffix='_right') #用on指定df1的某列和df2的索引合并
print(res);print()

       A_left    B A_right    D
index0     A0   B0     NaN  NaN
index1     A1   B1      C1   D1
index2     A2   B2      C2   D2
index3    NaN  NaN      C3   D3
       A_left       B A_right    D
index0     A0      B0     NaN  NaN
index1     A1      B1     NaN  NaN
index2     A2      B2     NaN  NaN
index2    NaN  index3      C3   D3
index2    NaN  index1      C1   D1
index2    NaN  index2      C2   D2

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt #画图模块
s = pd.Series(np.random.randn(1000), index=np.arange(1000))
s = s.cumsum()
#须在命令行执行, jupyter会报错
#s.plot()
#plt.show()
df = pd.DataFrame(np.random.randn(1000, 3), columns=['A', 'B', 'C'])
df = df.cumsum()
print(df.head()); print() #head默认显示前5行
#须在命令行执行, jupyter会报错
#s.plot()
#plt.show()
#须在命令行执行, jupyter会报错
#'bar', 'hist', 'box', 'kde', 'area', 'scatter', 'hexbin', 'pie'...
#class_B = df.plot.scatter(x='A', y='B', color='DarkBlue', label='Class B') #画图,scatter<散点图>
#df.plot.scatter(x='A', y='C', color='DarkRed', label='Class C', class_B=class_B)
#plt.show()

          A         B         C
0 -0.399363 -1.004210  0.641141
1 -1.970009 -0.608482 -0.758504
2 -3.081640 -0.617352 -1.143872
3 -2.174627 -1.383785 -1.011411
4 -1.415515 -1.892226 -2.511739

希望本文所述对大家Python程序设计有所帮助。

Python 相关文章推荐
Python操作列表的常用方法分享
Feb 13 Python
python3生成随机数实例
Oct 20 Python
python字典排序实例详解
May 20 Python
十条建议帮你提高Python编程效率
Feb 16 Python
Python 字典与字符串的互转实例
Jan 13 Python
python正则分析nginx的访问日志
Jan 17 Python
Python使用cx_Oracle模块操作Oracle数据库详解
May 07 Python
python中datetime模块中strftime/strptime函数的使用
Jul 03 Python
Python Opencv实现图像轮廓识别功能
Mar 23 Python
基于树莓派的语音对话机器人
Jun 17 Python
Django如何将URL映射到视图
Jul 29 Python
Python3 hashlib密码散列算法原理详解
Mar 30 Python
详解python中list的使用
Mar 15 #Python
详解Python_shutil模块
Mar 15 #Python
python批量修改文件夹及其子文件夹下的文件内容
Mar 15 #Python
使用PyQtGraph绘制精美的股票行情K线图的示例代码
Mar 14 #Python
详解Django+uwsgi+Nginx上线最佳实战
Mar 14 #Python
TensorFlow卷积神经网络之使用训练好的模型识别猫狗图片
Mar 14 #Python
Python通过TensorFlow卷积神经网络实现猫狗识别
Mar 14 #Python
You might like
十大催泪虐心动漫,你能坚持看到第几部?
2020/03/04 日漫
php中的观察者模式
2010/03/24 PHP
PHP引用符&amp;的用法详细解析
2013/08/22 PHP
php输出xml属性的方法
2015/03/19 PHP
php检查字符串中是否有外链的方法
2015/07/29 PHP
PHP的PDO预处理语句与存储过程
2019/01/27 PHP
input+select(multiple) 实现下拉框输入值
2009/05/21 Javascript
javascript 获取元素位置的快速方法 getBoundingClientRect()
2009/11/26 Javascript
javascript 函数参数限制说明
2010/11/19 Javascript
Javascript在IE下设置innerHTML时出现未知的运行时错误的解决方法
2011/01/12 Javascript
javascript模版引擎-tmpl的bug修复与性能优化分析
2011/10/23 Javascript
js 在定义的时候立即执行的函数表达式(function)写法
2013/01/16 Javascript
js控制滚动条缓慢滚动到顶部实现代码
2013/03/20 Javascript
Javascript基础知识(一)核心基础语法与事件模型
2014/09/29 Javascript
JS获取CSS样式(style/getComputedStyle/currentStyle)
2016/01/19 Javascript
Bootstrap3 内联单选和多选框
2016/12/29 Javascript
脚本div实现拖放功能(两种)
2017/02/13 Javascript
详解Vue中状态管理Vuex
2017/05/11 Javascript
IntelliJ IDEA 安装vue开发插件的方法
2017/11/21 Javascript
node.js使用免费的阿里云ip查询获取ip所在地【推荐】
2018/09/03 Javascript
详解angular2如何手动点击特定元素上的点击事件
2018/10/16 Javascript
js实现web调用摄像头 js截取视频画面
2019/04/21 Javascript
Vue3.0结合bootstrap创建多页面应用
2019/05/28 Javascript
Vue中实现权限控制的方法示例
2019/06/07 Javascript
如何基于javascript实现贪吃蛇游戏
2020/02/09 Javascript
javascript设计模式 ? 享元模式原理与用法实例分析
2020/04/15 Javascript
javascript设计模式 ? 备忘录模式原理与用法实例分析
2020/04/21 Javascript
[03:03]2014DOTA2国际邀请赛 EG战队专访
2014/07/12 DOTA
python开发之for循环操作实例详解
2015/11/12 Python
python之matplotlib学习绘制动态更新图实例代码
2018/01/23 Python
浅谈pandas中Dataframe的查询方法([], loc, iloc, at, iat, ix)
2018/04/10 Python
python虚拟环境的安装和配置(virtualenv,virtualenvwrapper)
2019/08/09 Python
乌克兰第一的珠宝网上商店:Gold.ua
2019/11/29 全球购物
2014年三八妇女节活动总结
2014/03/01 职场文书
体育课外活动总结
2014/07/08 职场文书
2019年汽车租赁合同范本!
2019/08/12 职场文书