python之pandas用法大全


Posted in Python onMarch 13, 2018

一、生成数据表

1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:

import numpy as np
import pandas as pd

2、导入CSV或者xlsx文件:

df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))

3、用pandas创建数据表:

df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006], 
 "date":pd.date_range('20130102', periods=6),
 "city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
 "age":[23,44,54,32,34,32],
 "category":['100-A','100-B','110-A','110-C','210-A','130-F'],
 "price":[1200,np.nan,2133,5433,np.nan,4432]},
 columns =['id','date','city','category','age','price'])

二、数据表信息查看

1、维度查看:

df.shape

2、数据表基本信息(维度、列名称、数据格式、所占空间等):

df.info()

3、每一列数据的格式:

df.dtypes

4、某一列格式:

df['B'].dtype

5、空值:

df.isnull()

6、查看某一列空值:

df.isnull()

7、查看某一列的唯一值:

df['B'].unique()

8、查看数据表的值:

df.values

9、查看列名称:

df.columns

10、查看前10行数据、后10行数据:

df.head() #默认前10行数据
df.tail()  #默认后10 行数据

三、数据表清洗

1、用数字0填充空值:

df.fillna(value=0)

2、使用列prince的均值对NA进行填充:

df['prince'].fillna(df['prince'].mean())

3、清楚city字段的字符空格:

df['city']=df['city'].map(str.strip)

4、大小写转换:

df['city']=df['city'].str.lower()

5、更改数据格式:

df['price'].astype('int')

6、更改列名称:

df.rename(columns={'category': 'category-size'})

7、删除后出现的重复值:

df['city'].drop_duplicates()

8、删除先出现的重复值:

df['city'].drop_duplicates(keep='last')

9、数据替换:

df['city'].replace('sh', 'shanghai')

四、数据预处理

df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008], 
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})

1、数据表合并

df_inner=pd.merge(df,df1,how='inner') # 匹配合并,交集
df_left=pd.merge(df,df1,how='left')    #
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer') #并集

2、设置索引列

df_inner.set_index('id')

3、按照特定列的值排序:

df_inner.sort_values(by=['age'])

4、按照索引列排序:

df_inner.sort_index()

5、如果prince列的值>3000,group列显示high,否则显示low:

df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')

6、对复合多个条件的数据进行分组标记

df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1

7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size

pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size']))

8、将完成分裂后的数据表和原df_inner数据表进行匹配

df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)

五、数据提取
主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。
1、按索引提取单行的数值

df_inner.loc[3]

2、按索引提取区域行数值

df_inner.iloc[0:5]

3、重设索引

df_inner.reset_index()

4、设置日期为索引

df_inner=df_inner.set_index('date')

5、提取4日之前的所有数据

df_inner[:'2013-01-04']

6、使用iloc按位置区域提取数据

df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。

7、适应iloc按位置单独提起数据

df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列

8、使用ix按索引标签和位置混合提取数据

df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据

9、判断city列的值是否为北京

df_inner['city'].isin(['beijing'])

10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来

df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])]

11、提取前三个字符,并生成数据表

pd.DataFrame(category.str[:3])

六、数据筛选
使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。
1、使用“与”进行筛选

df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]

2、使用“或”进行筛选

df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age'])

3、使用“非”条件进行筛选

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id'])

4、对筛选后的数据按city列进行计数

df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()

5、使用query函数进行筛选

df_inner.query('city == ["beijing", "shanghai"]')

6、对筛选后的结果按prince进行求和

df_inner.query('city == ["beijing", "shanghai"]').price.sum()

七、数据汇总
主要函数是groupby和pivote_table
1、对所有的列进行计数汇总

df_inner.groupby('city').count()

2、按城市对id字段进行计数

df_inner.groupby('city')['id'].count()

3、对两个字段进行汇总计数

df_inner.groupby(['city','size'])['id'].count()

4、对city字段进行汇总,并分别计算prince的合计和均值

df_inner.groupby('city')['price'].agg([len,np.sum, np.mean])

八、数据统计
数据采样,计算标准差,协方差和相关系数
1、简单的数据采样

df_inner.sample(n=3)

2、手动设置采样权重

weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights)

3、采样后不放回

df_inner.sample(n=6, replace=False)

4、采样后放回

df_inner.sample(n=6, replace=True)

5、 数据表描述性统计

df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置

6、计算列的标准差

df_inner['price'].std()

7、计算两个字段间的协方差

df_inner['price'].cov(df_inner['m-point'])

8、数据表中所有字段间的协方差

df_inner.cov()

9、两个字段的相关性分析

df_inner['price'].corr(df_inner['m-point']) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关

10、数据表的相关性分析

df_inner.corr()

九、数据输出
分析后的数据可以输出为xlsx格式和csv格式
1、写入Excel

df_inner.to_excel('excel_to_python.xlsx', sheet_name='bluewhale_cc')

2、写入到CSV

df_inner.to_csv('excel_to_python.csv')

以上就是关于pandas的基本用法,大家可以参考下

Python 相关文章推荐
python编写简单爬虫资料汇总
Mar 22 Python
python 2.7.14安装图文教程
Apr 08 Python
Numpy数组转置的两种实现方法
Apr 17 Python
python 实现图片旋转 上下左右 180度旋转的示例
Jan 24 Python
pycharm 安装JPype的教程
Aug 08 Python
Python for循环及基础用法详解
Nov 08 Python
关于python中的xpath解析定位
Mar 06 Python
Tensorflow加载Vgg预训练模型操作
May 26 Python
Python如何优雅删除字符列表空字符及None元素
Jun 25 Python
python爬取网易云音乐热歌榜实例代码
Aug 07 Python
selenium+python实现基本自动化测试的示例代码
Jan 27 Python
Python+Tkinter打造签名设计工具
Apr 01 Python
python使用sqlite3时游标使用方法
Mar 13 #Python
Python打印输出数组中全部元素
Mar 13 #Python
python实现学生信息管理系统
Apr 05 #Python
python针对excel的操作技巧
Mar 13 #Python
python实现聊天小程序
Mar 13 #Python
Python MySQLdb 使用utf-8 编码插入中文数据问题
Mar 13 #Python
python实现简易通讯录修改版
Mar 13 #Python
You might like
十天学会php(3)
2006/10/09 PHP
php入门学习知识点六 PHP文件的读写操作代码
2011/07/14 PHP
PHP Directory 函数的详解
2013/03/07 PHP
PHP5中Cookie与 Session使用详解
2013/04/30 PHP
PHP运行环境配置与开发环境的配置(图文教程)
2013/06/04 PHP
解析curl提交GET,POST,Cookie的简单方法
2013/06/29 PHP
php实现的XML操作(读取)封装类完整实例
2017/02/23 PHP
js 数据类型转换总结笔记
2011/01/17 Javascript
js下获得客户端操作系统的函数代码(1:vista,2:windows7,3:2000,4:xp,5:2003,6:2008)
2011/10/31 Javascript
JavaScript实现带标题的图片轮播特效
2015/05/20 Javascript
jquery之别踩白块游戏的简单实现
2016/07/25 Javascript
轻松掌握JavaScript中介者模式
2016/08/26 Javascript
js replace()去除代码中空格的实例
2017/02/14 Javascript
Vue.js搭建移动端购物车界面
2020/06/28 Javascript
详解layui弹窗父子窗口之间传参数的方法
2018/01/16 Javascript
vue中各选项及钩子函数执行顺序详解
2018/08/25 Javascript
Vue插件从封装到发布的完整步骤记录
2019/02/28 Javascript
详解keep-alive + vuex 让缓存的页面灵活起来
2019/04/19 Javascript
vue实现表单录入小案例
2019/09/27 Javascript
layui 解决form表单点击无反应的问题
2019/10/25 Javascript
JS实现手风琴特效
2020/11/08 Javascript
微信小程序实现音乐播放页面布局
2020/12/11 Javascript
[01:55]2014DOTA2国际邀请赛快报:国土生病 紧急去医院治疗
2014/07/10 DOTA
巧用Python装饰器 免去调用父类构造函数的麻烦
2012/05/18 Python
SQLite3中文编码 Python的实现
2017/01/11 Python
Python 如何创建一个简单的REST接口
2020/07/30 Python
Django修改app名称和数据表迁移方案实现
2020/09/17 Python
HTML5打开本地app应用的方法
2016/03/31 HTML / CSS
基于canvas使用贝塞尔曲线平滑拟合折线段的方法
2018/01/10 HTML / CSS
关于HTML5+ API plusready的兼容问题
2020/11/20 HTML / CSS
美国领先的机场停车聚合商:Airport Parking Reservations
2020/02/28 全球购物
绿化工程实施方案
2014/03/17 职场文书
六年级学生评语
2014/04/22 职场文书
上海世博会志愿者口号
2014/06/17 职场文书
大学生创业计划书怎么写
2014/09/15 职场文书
世界气象日活动总结
2015/02/27 职场文书