Python通过TensorFlow卷积神经网络实现猫狗识别


Posted in Python onMarch 14, 2019

这份数据集来源于Kaggle,数据集有12500只猫和12500只狗。在这里简单介绍下整体思路

  1. 处理数据
  2. 设计神经网络
  3. 进行训练测试

1. 数据处理

将图片数据处理为 tf 能够识别的数据格式,并将数据设计批次。

  • 第一步get_files() 方法读取图片,然后根据图片名,添加猫狗 label,然后再将 image和label 放到 数组中,打乱顺序返回
  • 将第一步处理好的图片 和label 数组 转化为 tensorflow 能够识别的格式,然后将图片裁剪和补充进行标准化处理,分批次返回。

新建数据处理文件 ,文件名 input_data.py

import tensorflow as tf
import os 
import numpy as np
def get_files(file_dir):
 cats = []
 label_cats = []
 dogs = []
 label_dogs = []
 for file in os.listdir(file_dir):
 name = file.split(sep='.')
 if 'cat' in name[0]:
 cats.append(file_dir + file)
 label_cats.append(0)
 else:
 if 'dog' in name[0]:
 dogs.append(file_dir + file)
 label_dogs.append(1)
 image_list = np.hstack((cats,dogs))
 label_list = np.hstack((label_cats,label_dogs))
 # print('There are %d cats\nThere are %d dogs' %(len(cats), len(dogs)))
 # 多个种类分别的时候需要把多个种类放在一起,打乱顺序,这里不需要
 # 把标签和图片都放倒一个 temp 中 然后打乱顺序,然后取出来
 temp = np.array([image_list,label_list])
 temp = temp.transpose()
 # 打乱顺序
 np.random.shuffle(temp)
 # 取出第一个元素作为 image 第二个元素作为 label
 image_list = list(temp[:,0])
 label_list = list(temp[:,1])
 label_list = [int(i) for i in label_list] 
 return image_list,label_list
# 测试 get_files
# imgs , label = get_files('/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/')
# for i in imgs:
# print("img:",i)
# for i in label:
# print('label:',i)
# 测试 get_files end
# image_W ,image_H 指定图片大小,batch_size 每批读取的个数 ,capacity队列中 最多容纳元素的个数
def get_batch(image,label,image_W,image_H,batch_size,capacity):
 # 转换数据为 ts 能识别的格式
 image = tf.cast(image,tf.string)
 label = tf.cast(label, tf.int32)
 # 将image 和 label 放倒队列里 
 input_queue = tf.train.slice_input_producer([image,label])
 label = input_queue[1]
 # 读取图片的全部信息
 image_contents = tf.read_file(input_queue[0])
 # 把图片解码,channels =3 为彩色图片, r,g ,b 黑白图片为 1 ,也可以理解为图片的厚度
 image = tf.image.decode_jpeg(image_contents,channels =3)
 # 将图片以图片中心进行裁剪或者扩充为 指定的image_W,image_H
 image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)
 # 对数据进行标准化,标准化,就是减去它的均值,除以他的方差
 image = tf.image.per_image_standardization(image)
 # 生成批次 num_threads 有多少个线程根据电脑配置设置 capacity 队列中 最多容纳图片的个数 tf.train.shuffle_batch 打乱顺序,
 image_batch, label_batch = tf.train.batch([image, label],batch_size = batch_size, num_threads = 64, capacity = capacity)
 # 重新定义下 label_batch 的形状
 label_batch = tf.reshape(label_batch , [batch_size])
 # 转化图片
 image_batch = tf.cast(image_batch,tf.float32)
 return image_batch, label_batch
# test get_batch
# import matplotlib.pyplot as plt
# BATCH_SIZE = 2
# CAPACITY = 256 
# IMG_W = 208
# IMG_H = 208
# train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/testImg/'
# image_list, label_list = get_files(train_dir)
# image_batch, label_batch = get_batch(image_list, label_list, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)
# with tf.Session() as sess:
# i = 0
# # Coordinator 和 start_queue_runners 监控 queue 的状态,不停的入队出队
# coord = tf.train.Coordinator()
# threads = tf.train.start_queue_runners(coord=coord)
# # coord.should_stop() 返回 true 时也就是 数据读完了应该调用 coord.request_stop()
# try: 
#  while not coord.should_stop() and i<1:
#   # 测试一个步
#   img, label = sess.run([image_batch, label_batch])
#   for j in np.arange(BATCH_SIZE):
#    print('label: %d' %label[j])
#    # 因为是个4D 的数据所以第一个为 索引 其他的为冒号就行了
#    plt.imshow(img[j,:,:,:])
#    plt.show()
#   i+=1
# # 队列中没有数据
# except tf.errors.OutOfRangeError:
#  print('done!')
# finally:
#  coord.request_stop()
# coord.join(threads)
 # sess.close()

2. 设计神经网络

利用卷积神经网路处理,网络结构为

# conv1 卷积层 1
# pooling1_lrn 池化层 1
# conv2 卷积层 2
# pooling2_lrn 池化层 2
# local3 全连接层 1
# local4 全连接层 2
# softmax 全连接层 3

新建神经网络文件 ,文件名 model.py

#coding=utf-8 
import tensorflow as tf 
def inference(images, batch_size, n_classes): 
 with tf.variable_scope('conv1') as scope: 
  # 卷积盒的为 3*3 的卷积盒,图片厚度是3,输出是16个featuremap
  weights = tf.get_variable('weights', 
         shape=[3, 3, 3, 16], 
         dtype=tf.float32, 
         initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32)) 
  biases = tf.get_variable('biases', 
         shape=[16], 
         dtype=tf.float32, 
         initializer=tf.constant_initializer(0.1)) 
  conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME') 
  pre_activation = tf.nn.bias_add(conv, biases) 
  conv1 = tf.nn.relu(pre_activation, name=scope.name) 
 with tf.variable_scope('pooling1_lrn') as scope: 
   pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1') 
   norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1') 
 with tf.variable_scope('conv2') as scope: 
    weights = tf.get_variable('weights', 
           shape=[3, 3, 16, 16], 
           dtype=tf.float32, 
           initializer=tf.truncated_normal_initializer(stddev=0.1, dtype=tf.float32)) 
    biases = tf.get_variable('biases', 
           shape=[16], 
           dtype=tf.float32, 
           initializer=tf.constant_initializer(0.1)) 
    conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME') 
    pre_activation = tf.nn.bias_add(conv, biases) 
    conv2 = tf.nn.relu(pre_activation, name='conv2') 
 # pool2 and norm2 
 with tf.variable_scope('pooling2_lrn') as scope: 
  norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2') 
  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2') 
 with tf.variable_scope('local3') as scope: 
  reshape = tf.reshape(pool2, shape=[batch_size, -1]) 
  dim = reshape.get_shape()[1].value 
  weights = tf.get_variable('weights', 
         shape=[dim, 128], 
         dtype=tf.float32, 
         initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32)) 
  biases = tf.get_variable('biases', 
         shape=[128], 
         dtype=tf.float32, 
         initializer=tf.constant_initializer(0.1)) 
 local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name) 
 # local4 
 with tf.variable_scope('local4') as scope: 
  weights = tf.get_variable('weights', 
         shape=[128, 128], 
         dtype=tf.float32, 
         initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32)) 
  biases = tf.get_variable('biases', 
         shape=[128], 
         dtype=tf.float32, 
         initializer=tf.constant_initializer(0.1)) 
  local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4') 
 # softmax 
 with tf.variable_scope('softmax_linear') as scope: 
  weights = tf.get_variable('softmax_linear', 
         shape=[128, n_classes], 
         dtype=tf.float32, 
         initializer=tf.truncated_normal_initializer(stddev=0.005, dtype=tf.float32)) 
  biases = tf.get_variable('biases', 
         shape=[n_classes], 
         dtype=tf.float32, 
         initializer=tf.constant_initializer(0.1)) 
  softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear') 
 return softmax_linear 
def losses(logits, labels): 
 with tf.variable_scope('loss') as scope: 
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits \
      (logits=logits, labels=labels, name='xentropy_per_example') 
  loss = tf.reduce_mean(cross_entropy, name='loss') 
  tf.summary.scalar(scope.name + '/loss', loss) 
 return loss 
def trainning(loss, learning_rate): 
 with tf.name_scope('optimizer'): 
  optimizer = tf.train.AdamOptimizer(learning_rate= learning_rate) 
  global_step = tf.Variable(0, name='global_step', trainable=False) 
  train_op = optimizer.minimize(loss, global_step= global_step) 
 return train_op 
def evaluation(logits, labels): 
 with tf.variable_scope('accuracy') as scope: 
  correct = tf.nn.in_top_k(logits, labels, 1) 
  correct = tf.cast(correct, tf.float16) 
  accuracy = tf.reduce_mean(correct) 
  tf.summary.scalar(scope.name + '/accuracy', accuracy) 
 return accuracy

3. 训练数据,并将训练的模型存储

import os 
import numpy as np 
import tensorflow as tf 
import input_data  
import model 
N_CLASSES = 2 # 2个输出神经元,[1,0] 或者 [0,1]猫和狗的概率
IMG_W = 208 # 重新定义图片的大小,图片如果过大则训练比较慢 
IMG_H = 208 
BATCH_SIZE = 32 #每批数据的大小
CAPACITY = 256 
MAX_STEP = 15000 # 训练的步数,应当 >= 10000
learning_rate = 0.0001 # 学习率,建议刚开始的 learning_rate <= 0.0001
def run_training(): 
 # 数据集
 train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/img/' #My dir--20170727-csq 
 #logs_train_dir 存放训练模型的过程的数据,在tensorboard 中查看 
 logs_train_dir = '/Users/yangyibo/GitWork/pythonLean/AI/猫狗识别/saveNet/' 
 # 获取图片和标签集
 train, train_label = input_data.get_files(train_dir) 
 # 生成批次
 train_batch, train_label_batch = input_data.get_batch(train, 
               train_label, 
               IMG_W, 
               IMG_H, 
               BATCH_SIZE, 
               CAPACITY)
 # 进入模型
 train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES) 
 # 获取 loss 
 train_loss = model.losses(train_logits, train_label_batch)
 # 训练 
 train_op = model.trainning(train_loss, learning_rate)
 # 获取准确率 
 train__acc = model.evaluation(train_logits, train_label_batch) 
 # 合并 summary
 summary_op = tf.summary.merge_all() 
 sess = tf.Session()
 # 保存summary
 train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph) 
 saver = tf.train.Saver() 
 sess.run(tf.global_variables_initializer()) 
 coord = tf.train.Coordinator() 
 threads = tf.train.start_queue_runners(sess=sess, coord=coord) 
 try: 
  for step in np.arange(MAX_STEP): 
   if coord.should_stop(): 
     break 
   _, tra_loss, tra_acc = sess.run([train_op, train_loss, train__acc]) 
   if step % 50 == 0: 
    print('Step %d, train loss = %.2f, train accuracy = %.2f%%' %(step, tra_loss, tra_acc*100.0)) 
    summary_str = sess.run(summary_op) 
    train_writer.add_summary(summary_str, step) 
   if step % 2000 == 0 or (step + 1) == MAX_STEP: 
    # 每隔2000步保存一下模型,模型保存在 checkpoint_path 中
    checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt') 
    saver.save(sess, checkpoint_path, global_step=step) 
 except tf.errors.OutOfRangeError: 
  print('Done training -- epoch limit reached') 
 finally: 
  coord.request_stop()
 coord.join(threads) 
 sess.close() 
# train
run_training()

关于保存的模型怎么使用将在下一篇文章中展示。

如果需要训练数据集可以评论留下联系方式。

原文完整代码地址:

https://github.com/527515025/My-TensorFlow-tutorials/tree/master/猫狗识别

欢迎 star 欢迎提问。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对三水点靠木的支持。如果你想了解更多相关内容请查看下面相关链接

Python 相关文章推荐
Python 实现选择排序的算法步骤
Apr 22 Python
基于python实现学生管理系统
Oct 17 Python
详解python3安装pillow后报错没有pillow模块以及没有PIL模块问题解决
Apr 17 Python
如何通过python画loss曲线的方法
Jun 26 Python
python 实现方阵的对角线遍历示例
Nov 29 Python
关于ZeroMQ 三种模式python3实现方式
Dec 23 Python
为什么黑客都用python(123个黑客必备的Python工具)
Jan 31 Python
基于python3的socket聊天编程
Feb 17 Python
python中adb有什么功能
Jun 07 Python
django使用channels实现通信的示例
Oct 19 Python
详解Flask开发技巧之异常处理
Jun 15 Python
基于Python实现一个春节倒计时脚本
Jan 22 Python
python3实现钉钉消息推送的方法示例
Mar 14 #Python
详解Python做一个名片管理系统
Mar 14 #Python
在Python中使用Neo4j的方法
Mar 14 #Python
浅谈Python中eval的强大与危害
Mar 13 #Python
详解python中init方法和随机数方法
Mar 13 #Python
Python使用sqlalchemy模块连接数据库操作示例
Mar 13 #Python
python ---lambda匿名函数介绍
Mar 13 #Python
You might like
全国FM电台频率大全 - 6 辽宁省
2020/03/11 无线电
2019十大人气国漫
2020/03/13 国漫
福利彩票幸运号码自动生成器
2006/10/09 PHP
PHP中动态显示签名和ip原理
2007/03/28 PHP
php上传excel表格并获取数据
2017/04/27 PHP
PHP实现的AES加密、解密封装类与用法示例
2018/08/02 PHP
推荐11款jQuery开发的复选框和单选框美化插件
2011/08/02 Javascript
jQuery实现冻结表格行和列
2015/04/29 Javascript
javascript实现仿IE顶部的可关闭警告条
2015/05/05 Javascript
js实现时间显示几天前、几小时前或者几分钟前的方法集锦
2015/05/29 Javascript
JavaScript中的setMilliseconds()方法使用详解
2015/06/11 Javascript
原生js实现焦点轮播图效果
2017/01/12 Javascript
微信小程序 数据遍历的实现
2017/04/05 Javascript
Angular2入门教程之模块和组件详解
2017/05/28 Javascript
利用JavaScript对中文(汉字)进行排序实例详解
2017/06/18 Javascript
bootstrap3-dialog-master模态框使用详解
2017/08/22 Javascript
vue中的模态对话框组件实现过程
2018/05/01 Javascript
vue实现鼠标移入移出事件代码实例
2019/03/27 Javascript
原生js基于canvas实现一个简单的前端截图工具代码实例
2019/09/10 Javascript
JavaScript适配器模式原理与用法实例详解
2020/03/09 Javascript
[36:13]Mineski vs iG 2018国际邀请赛小组赛BO2 第一场 8.16
2018/08/17 DOTA
python构造icmp echo请求和实现网络探测器功能代码分享
2014/01/10 Python
Matplotlib 生成不同大小的subplots实例
2018/05/25 Python
python实现在遍历列表时,直接对dict元素增加字段的方法
2019/01/15 Python
PyCharm 设置SciView工具窗口的方法
2019/01/15 Python
Python使用py2neo操作图数据库neo4j的方法详解
2020/01/13 Python
Python selenium抓取虎牙短视频代码实例
2020/03/02 Python
QML用PathView实现轮播图
2020/06/03 Python
用python读取xlsx文件
2020/12/17 Python
关于HTML5语义标签的实践(blog页面)
2016/07/12 HTML / CSS
俄罗斯极限运动网上商店:Board Shop №1
2020/12/18 全球购物
高一学生评语大全
2014/04/25 职场文书
文艺晚会策划方案
2014/06/11 职场文书
战马观后感
2015/06/08 职场文书
2016北大自主招生自荐信模板
2016/01/28 职场文书
Go Grpc Gateway兼容HTTP协议文档自动生成网关
2022/06/16 Golang