pandas如何处理缺失值


Posted in Python onJuly 31, 2019

在实际应用中对于数据进行分析的时候,经常能看见缺失值,下面来介绍一下如何利用pandas来处理缺失值。常见的缺失值处理方式有,过滤、填充。

一、缺失值的判断

pandas使用浮点值NaN(Not a Number)表示浮点数和非浮点数组中的缺失值,同时python内置None值也会被当作是缺失值。

a、Series的缺失值判断

s = Series(["a","b",np.nan,"c",None])
  print(s)
  '''
  0    a
  1    b
  2   NaN
  3    c
  4  None
  '''
  #判断缺失值,如果是则返回True,否则返回False
  print(s.isnull())
  '''
  0  False
  1  False
  2   True
  3  False
  4   True
  '''
  #输出缺失值的索引和值
  print(s[s.isnull()])
  '''
  2   NaN
  4  None
  '''

b、DataFrame的缺失值判断

a = [[1,np.nan,2],[3,4,None]]
  data = DataFrame(a)
  #DataFrame的None值变成了NaN
  print(data)
  '''
    0  1  2
  0 1 NaN 2.0
  1 3 4.0 NaN
  '''
  print(data.isnull())
  '''
      0   1   2
  0 False  True False
  1 False False  True
  '''
  print(data[data.isnull()])
  '''
    0  1  2
  0 NaN NaN NaN
  1 NaN NaN NaN
  '''

注意:在使用Series和DataFrame的时候,如果其中有值为None,Series会输出None,而DataFrame会输出NaN,但是对空值判断没有影响。DataFrame使用isnull方法在输出空值的时候全为NaN,因为DataFrame对于False对应的位置,输出值会使用NaN代替,而Series对于Fasel对应的位置是没有输出值的。

二、过滤缺失数据

a、Series的缺失值过滤

s = Series(["a","b",np.nan,"c",None])
  #通过使用notnull方法来获取非缺失数据
  print(s[s.notnull()])
  '''
  0  a
  1  b
  3  c
  '''
  #使用dropna方法删除缺失数据,返回一个删除后的Series
  print(s.dropna())
  '''
  0  a
  1  b
  3  c
  '''
  #并没有在原来的Series上进行直接删除
  print(s)
  '''
  0    a
  1    b
  2   NaN
  3    c
  4  None
  '''
  #通过设置inplace参数为True,在原Series上进行删除,不会返回Series
  print(s.dropna(inplace=True))
  #None
  print(s)
  '''
  0  a
  1  b
  3  c
  '''

b、DataFrame的缺失值过滤

DataFrame删除缺失值相对于Series而言就要复杂一些,也许有的时候你是想删除含有缺失值的行或列,也许有时候你需要删除的是,当整行或整列全为缺失值的时候才删除,好在pandas对于这两种情况都有相对应的处理方法。

1、删除含有缺失值的行和列

a = [[1, np.nan, 2],[9,None,np.nan],[3, 4, None],[5,6,7]]
  data = DataFrame(a)
  print(data)
  '''
    0  1  2
  0 1 NaN 2.0
  1 9 NaN NaN
  2 3 4.0 NaN
  3 5 6.0 7.0 
  '''
  #使用dropna方法删除含有缺失值的行,默认是行
  print(data.dropna())
  '''
    0  1  2
  3 5 6.0 7.0
  '''
  #删除含有缺失值的列
  print(data.dropna(axis=1))
  '''
    0
  0 1
  1 9
  2 3
  3 5
  '''

2、删除全为NaN的行和列

a = [[1, np.nan, 2],[np.nan,None,np.nan],[3, None, None],[5,None,7]]
  data = DataFrame(a)
  print(data)
  '''
     0  1  2
  0 1.0 NaN 2.0
  1 NaN NaN NaN
  2 3.0 NaN NaN
  3 5.0 NaN 7.0
  '''
  #当行全为NaN的时候,才删除,参数how默认是any,含有缺失值就删除
  print(data.dropna(how="all"))
  '''
     0  1  2
  0 1.0 NaN 2.0
  2 3.0 NaN NaN
  3 5.0 NaN 7.0
  '''
  #当列全为NaN的时候,才删除
  print(data.dropna(how="all",axis=1))
  '''
     0  2
  0 1.0 2.0
  1 NaN NaN
  2 3.0 NaN
  3 5.0 7.0
  '''

dropna方法的inplace的设置与Series一样。

3、指定删除数据后显示部分数据观察

a = [[1, np.nan, 2],[np.nan,None,np.nan],[3, None, None],[5,None,7]]
  data = DataFrame(a)
  print(data)
  '''
     0  1  2
  0 1.0 NaN 2.0
  1 NaN NaN NaN
  2 3.0 NaN NaN
  3 5.0 NaN 7.0
  '''
  #当行全为NaN的时候,才删除,参数how默认是any,含有缺失值就删除
  print(data.dropna(how="all"))
  '''
     0  1  2
  0 1.0 NaN 2.0
  2 3.0 NaN NaN
  3 5.0 NaN 7.0
  '''
  #通过thresh参数来控制显示删除数据的条数,删除列的时候thresh参数无效
  print(data.dropna(how="all",thresh=2))
  '''
     0  1  2
  0 1.0 NaN 2.0
  3 5.0 NaN 7.0
  '''

三、填充缺失值

数据都是宝贵的,也许有时候你的数据不够多,因为数据越多对于模型的训练,数据分析都是有好处的,所以很多的时候我们都不想删除数据。通常情况下,也许你会选择用一些特殊值来填充缺失值。下面介绍使用pandas的fillna方法来填充缺失数据。

1、指定特殊值填充缺失值

a = [[1, 2, 2],[3,None,6],[3, 7, None],[5,None,7]]
  data = DataFrame(a)
  print(data)
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 NaN 6.0
  2 3 7.0 NaN
  3 5 NaN 7.0
  '''
  #用0填充所有的缺失数据
  print(data.fillna(0))
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 0.0 6.0
  2 3 7.0 0.0
  3 5 0.0 7.0
  '''

2、不同列使用不同的填充值

a = [[1, 2, 2],[3,None,6],[3, 7, None],[5,None,7]]
  data = DataFrame(a)
  print(data)
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 NaN 6.0
  2 3 7.0 NaN
  3 5 NaN 7.0
  '''
  print(data.fillna({1:1,2:2}))
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 1.0 6.0
  2 3 7.0 2.0
  3 5 1.0 7.0
  '''

3、前向填充和后向填充

a = [[1, 2, 2],[3,None,6],[3, 7, None],[5,None,7]]
  data = DataFrame(a)
  print(data)
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 NaN 6.0
  2 3 7.0 NaN
  3 5 NaN 7.0
  '''
  #前向填充,使用默认是上一行的值,设置axis=1可以使用列进行填充
  print(data.fillna(method="ffill"))
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 2.0 6.0
  2 3 7.0 6.0
  3 5 7.0 7.0
  '''
  #后向填充,使用下一行的值,不存在的时候就不填充
  print(data.fillna(method="bfill"))
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 7.0 6.0
  2 3 7.0 7.0
  3 5 NaN 7.0
  '''

4、使用列的平均值进行填充

a = [[1, 2, 2],[3,None,6],[3, 7, None],[5,None,7]]
  data = DataFrame(a)
  print(data)
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 NaN 6.0
  2 3 7.0 NaN
  3 5 NaN 7.0
  '''
  print(data.fillna(data.mean()))
  '''
    0  1  2
  0 1 2.0 2.0
  1 3 4.5 6.0
  2 3 7.0 5.0
  3 5 4.5 7.0
  '''

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
python调用新浪微博API项目实践
Jul 28 Python
python实现多张图片拼接成大图
Jan 15 Python
Python提取频域特征知识点浅析
Mar 04 Python
Python 中的参数传递、返回值、浅拷贝、深拷贝
Jun 25 Python
基于Django的乐观锁与悲观锁解决订单并发问题详解
Jul 31 Python
Django框架中序列化和反序列化的例子
Aug 06 Python
python针对mysql数据库的连接、查询、更新、删除操作示例
Sep 11 Python
使用Python paramiko模块利用多线程实现ssh并发执行操作
Dec 05 Python
Python json转字典字符方法实例解析
Apr 13 Python
PyTorch如何搭建一个简单的网络
Aug 24 Python
python面向对象版学生信息管理系统
Jun 24 Python
Python可视化学习之matplotlib内置单颜色
Feb 24 Python
详细介绍pandas的DataFrame的append方法使用
Jul 31 #Python
使用pandas读取文件的实现
Jul 31 #Python
python3实现mysql导出excel的方法
Jul 31 #Python
Django接收post前端返回的json格式数据代码实现
Jul 31 #Python
python快速编写单行注释多行注释的方法
Jul 31 #Python
使用 Django Highcharts 实现数据可视化过程解析
Jul 31 #Python
利用Python检测URL状态
Jul 31 #Python
You might like
PHP获取url的函数代码
2011/08/02 PHP
php防止SQL注入详解及防范
2013/11/12 PHP
php计算两个日期时间差(返回年、月、日)
2014/06/19 PHP
PHP模板解析类实例
2015/07/09 PHP
thinkPHP查询方式小结
2016/01/09 PHP
Symfony2学习笔记之插件格式分析
2016/03/17 PHP
随机显示经典句子或诗歌的javascript脚本
2007/08/04 Javascript
javascript之Partial Application学习
2013/01/10 Javascript
jquery 动态创建元素的方式介绍及应用
2013/04/21 Javascript
js克隆对象、数组的常用方法介绍
2013/09/26 Javascript
javascript右下角弹层及自动隐藏(自己编写)
2013/11/20 Javascript
基于JavaScript代码实现随机漂浮图片广告
2016/01/05 Javascript
微信小程序 input输入框控件详解及实例(多种示例)
2016/12/14 Javascript
vue给input file绑定函数获取当前上传的对象完美实现方法
2017/12/15 Javascript
vue自定义一个v-model的实现代码
2018/06/21 Javascript
node.js使用redis储存session的方法
2018/09/26 Javascript
Vue cli3 库模式搭建组件库并发布到 npm的流程
2018/10/12 Javascript
Vue实现简易计算器
2020/02/25 Javascript
vue瀑布流组件实现上拉加载更多
2020/03/10 Javascript
[04:22]DSPL第二期精彩集锦:残血反杀!
2014/12/10 DOTA
老生常谈python的私有公有属性(必看篇)
2017/06/09 Python
Python+selenium 获取一组元素属性值的实例
2018/06/22 Python
Selenium鼠标与键盘事件常用操作方法示例
2018/08/13 Python
Python访问MongoDB,并且转换成Dataframe的方法
2018/10/15 Python
python多个模块py文件的数据共享实例
2019/01/11 Python
Django使用unittest模块进行单元测试过程解析
2019/08/02 Python
Python 读取 YUV(NV12) 视频文件实例
2019/12/09 Python
安装完Python包然后找不到模块的解决步骤
2020/02/13 Python
python 5个顶级异步框架推荐
2020/09/09 Python
CSS3中文字镂空、透明值、阴影效果设置示例小结
2016/03/07 HTML / CSS
Hunkemöller西班牙:欧洲最大的内衣连锁店
2018/08/15 全球购物
2014年银行个人工作总结
2014/12/05 职场文书
大学生助学金感谢信
2015/01/21 职场文书
加入学生会自荐书
2015/03/05 职场文书
音乐课外活动总结
2015/05/09 职场文书
高考1977观后感
2015/06/04 职场文书