使用pandas读取文件的实现


Posted in Python onJuly 31, 2019

pandas可以将读取到的表格型数据(文件不一定要是表格)转成DataFrame类型的数据结构,然后我们可以通过操作DataFrame进行数据分析,数据预处理以及行和列的操作等。下面介绍一些常用读取文件的方法

1、read_csv函数

功能:从文件、URL、文件新对象中加载带有分隔符的数据,默认分隔符是逗号。

data.txt

a,b,c,d,name
1,2,3,4,python
5,6,7,8,java
9,10,11,12,c++
data = pd.read_csv("data.txt")
  print(data)
  '''
    a  b  c  d  name
  0 1  2  3  4 python
  1 5  6  7  8  java
  2 9 10 11 12   c++
  '''

2、read_table函数

功能:从文件、URL、文件型对象中加载带分隔符的数据,默认分隔符为制表符("\t")。
data.txt的内容还是不变,我们可以通过指定read_table的sep参数来修改默认的分隔符。

data = pd.read_table("data.txt",sep=",")
  print(data)
  '''
    a  b  c  d  name
  0 1  2  3  4 python
  1 5  6  7  8  java
  2 9 10 11 12   c++
  '''

3、读取没有标题的文件

data.txt

1,2,3,4,python
5,6,7,8,java
9,10,11,12,c++
data = pd.read_csv("data.txt")
  #默认将第一行作为标题
  print(data)
  '''
    1  2  3  4 python
  0 5  6  7  8  java
  1 9 10 11 12  c++
  '''
  #设置header参数,读取文件的时候没有标题
  data1 = pd.read_csv("data.txt",header=None)
  print(data1)
  '''
    0  1  2  3    4
  0 1  2  3  4 python
  1 5  6  7  8  java
  2 9 10 11 12   c++
  '''
  #设置names参数,来设置文件的标题
  data2 = pd.read_csv("data.txt",names=["a","b","c","d","name"])
  print(data2)
  '''
    a  b  c  d  name
  0 1  2  3  4 python
  1 5  6  7  8  java
  2 9 10 11 12   c++
  '''

4、读取文件设置列索引

#设置names参数,来设置文件的标题,设置index_col参数来设置列索引
  data2 = pd.read_csv("data.txt",names=["a","b","c","d","name"],index_col="name")
  print(data2)
  '''
      a  b  c  d
  name
  python 1  2  3  4
  java  5  6  7  8
  c++   9 10 11 12
  '''

如果不设置列索引,默认会使用从0开始的整数索引。当对表格的某一行或列进行操作之后,在保存成文件的时候你会发现总是会多一列从0开始的列,如果设置index_col参数来设置列索引,就不会出现这种问题了。

a、指定多个列为列索引产生一个层次化索引

一个值由两个列索引(key1和kye2)和一个行索引(value1或value2)来决定,可以将其理解为一个三维数据,三个点来构成一个坐标位置。

data.txt

key1,key2,value1,value2
a,a,1,2
a,b,3,4
b,c,5,6
b,d,7,8
c,e,9,10
c,f,11,12
data = pd.read_csv("data.txt",index_col=["key1","key2"])
  print(data)
  '''
        value1 value2
  key1 key2
  a  a     1    2
     b     3    4
  b  c     5    6
     d     7    8
  c  e     9   10
     f     11   12
  '''

5、对于不规则分隔符,使用正则表达式读取文件

文件中的分隔符采用的是空格,那么我们只需要设置sep=" "来读取文件就可以了。当分隔符并不是单个的空格,也许有的是一个空格有的是多个空格时,如果这个时候还是采用sep=" "来读取文件,也许你就会得到一个很奇怪的数据,因为它会将空格也做为数据。

data.txt

name a  b c  d
python  1 2 3   4
java 5 6 7 8
c++ 9  10  11 12
data = pd.read_csv("data.txt",sep=" ")
  print(data)
  '''
      name  a Unnamed: 2 Unnamed: 3  b Unnamed: 5  c Unnamed: 7 \
  python  NaN NaN     1.0     NaN  2     3.0 NaN     NaN  
  java   5.0 6.0     NaN     7.0  8     NaN NaN     NaN  
  c++   NaN 9.0     NaN     NaN 10     NaN NaN    11.0  
  
      Unnamed: 8 Unnamed: 9  d 
  python     NaN     NaN 4.0 
  java      NaN     NaN NaN 
  c++      NaN    12.0 NaN 
  '''

使用正则表达式进行分割就可以避免上面问题的发生

data = pd.read_csv("data.txt",sep="\s+")
  print(data)
  '''
     name a  b  c  d
  0 python 1  2  3  4
  1  java 5  6  7  8
  2   c++ 9 10 11 12
  '''

6、跳行读取文件

有的时候,你会遇到表格中的某些行数据你并不需要。可以通过skiprows参数来跳过这些行。

data.txt

#data.txt
name,a,b,c,d
python,1,2,3,4
#hello
java,5,6,7,8
#word
c++,9,10,11,12
#通过skiprows参数来设置跳过行,从0开始
  data = pd.read_csv("data.txt",skiprows=[0,3,5])
  print(data)
  '''
     name a  b  c  d
  0 python 1  2  3  4
  1  java 5  6  7  8
  2   c++ 9 10 11 12
  '''

7、读取含有缺失值的文件

使用pandas在读取文件的时候,pandas会默认将NA、-1.#IND、NULL等当作是缺失值,pandas默认使用NaN进行代替。

data.txt

name,a,b,c,d
python,1,NA,3,4
java,5,6,7,NULL
c++,-1.#IND,10,,12
data = pd.read_csv("data.txt")
  print(data)
  '''
     name  a   b  c   d
  0 python 1.0  NaN 3.0  4.0
  1  java 5.0  6.0 7.0  NaN
  2   c++ NaN 10.0 NaN 12.0
  '''

也许有的时候也许pandas默认被当作的缺失值还不能满足你的要求,我们可以通过设置na_values,将指定的值替换成为NaN值

data1 = pd.read_csv("data.txt",na_values=["java","c++"])
  print(data1)
  '''
     name  a   b  c   d
  0 python 1.0  NaN 3.0  4.0
  1   NaN 5.0  6.0 7.0  NaN
  2   NaN NaN 10.0 NaN 12.0
  '''

也许有时候你还会遇到,你想将某个值替换成为NaN,但是可能有多个列都包含了这个值,而我们却不想替换所有的列,我们可以通过一个字典的形式来设置na_values参数,字典的键就是列索引,值就是你要替换的值。

data.txt

name,a,b,c,d
python,1,NA,3,4
java,5,6,python,NULL
c++,-1.#IND,10,,c++
#将python和c++都用NaN进行替代,将所有的python和c++都替换成了NaN
  data1 = pd.read_csv("data.txt",na_values=["python","c++"])
  print(data1)
  '''
    name  a   b  c  d
  0  NaN 1.0  NaN 3.0 4.0
  1 java 5.0  6.0 NaN NaN
  2  NaN NaN 10.0 NaN NaN
  '''

只将第一列的python和c++替换为NaN

#将python和c++都用NaN进行替代
  dic = {"name":["python","c++"]}
  data1 = pd.read_csv("data.txt",na_values=dic)
  print(data1)
  '''
    name  a   b    c  d
  0  NaN 1.0  NaN    3  4
  1 java 5.0  6.0 python NaN
  2  NaN NaN 10.0   NaN c++
  '''

8、read_csv和read_tabel的参数介绍

read_csv和read_table函数有很多的参数,下面对一些重点参数进行介绍。

参数:

path:表示文件系统位置、URL、文件型对象的字符串。

sep或delimiter:用于对行中各字段进行拆分的字符序列或正则表达式。

header:用作列名的行号。默认为0(第一行),如果文件没有标题行就将header参数设置为None。

index_col:用作行索引的列编号或列名。可以是单个名称/数字或有多个名称/数字组成的列表(层次化索引)。

names:用于结果的列名列表,结合header=None,可以通过names来设置标题行。

skiprows:需要忽略的行数(从0开始),设置的行数将不会进行读取。

na_values:设置需要将值替换成NA的值。

comment:用于注释信息从行尾拆分出去的字符(一个或多个)。

parse_dates:尝试将数据解析为日期,默认为False。如果为True,则尝试解析所有列。除此之外,参数可以指定需要解析的一组列号或列名。如果列表的元素为列表或元组,就会将多个列组合到一起再进行日期解析工作。

keep_date_col:如果连接多列解析日期,则保持参与连接的列。默认为False。

converters:由列号/列名跟函数之间的映射关系组成的字典。如,{"age:",f}会对列索引为age列的所有值应用函数f。

dayfirst:当解析有歧义的日期时,将其看做国际格式(例如,7/6/2012   ---> June 7 , 2012)。默认为False。

date_parser:用于解析日期的函数。

nrows:需要读取的行数。

iterator:返回一个TextParser以便逐块读取文件。

chunksize:文件块的大小(用于迭代)。

skip_footer:需要忽略的行数(从文件末尾开始计算)。

verbose:打印各种解析器输出信息,如“非数值列中的缺失值的数量”等。

encoding:用于unicode的文本编码格式。例如,"utf-8"或"gbk"等文本的编码格式。

squeeze:如果数据经过解析之后只有一列的时候,返回Series。

thousands:千分位分隔符,如","或"."。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持三水点靠木。

Python 相关文章推荐
使用Python的web.py框架实现类似Django的ORM查询的教程
May 02 Python
Python字符串逆序输出的实例讲解
Feb 16 Python
Python 自动登录淘宝并保存登录信息的方法
Sep 04 Python
python处理document文档保留原样式
Sep 23 Python
python函数enumerate,operator和Counter使用技巧实例小结
Feb 22 Python
python GUI库图形界面开发之PyQt5不规则窗口实现与显示GIF动画的详细方法与实例
Mar 09 Python
PyQt5多线程防卡死和多窗口用法的实现
Sep 15 Python
基于django和dropzone.js实现上传文件
Nov 24 Python
Python自动化测试基础必备知识点总结
Feb 07 Python
Python学习开发之图形用户界面详解
Aug 23 Python
python分分钟绘制精美地图海报
Feb 15 Python
Python echarts实现数据可视化实例详解
Mar 03 Python
python3实现mysql导出excel的方法
Jul 31 #Python
Django接收post前端返回的json格式数据代码实现
Jul 31 #Python
python快速编写单行注释多行注释的方法
Jul 31 #Python
使用 Django Highcharts 实现数据可视化过程解析
Jul 31 #Python
利用Python检测URL状态
Jul 31 #Python
Python解析json时提示“string indices must be integers”问题解决方法
Jul 31 #Python
Python Web程序搭建简单的Web服务器
Jul 31 #Python
You might like
PHP Pear 安装及使用
2009/03/19 PHP
PHP网站安装程序制作的原理、步骤、注意事项和示例代码
2010/08/01 PHP
PHP MemCached 高级缓存应用代码
2010/08/05 PHP
PHP递归调用的小技巧讲解
2013/02/19 PHP
php引用返回与取消引用的详解
2013/06/08 PHP
PHP实现文件下载【实例分享】
2017/04/28 PHP
异步javascript的原理和实现技巧介绍
2012/11/08 Javascript
js限制文本框只能输入数字方法小结
2014/06/16 Javascript
让人蛋疼的JavaScript语法特性
2014/09/30 Javascript
JavaSciprt中处理字符串之sup()方法的使用教程
2015/06/08 Javascript
JavaScript实现动态添加,删除行的方法实例详解
2015/07/02 Javascript
jQuery模拟原生态App上拉刷新下拉加载更多页面及原理
2015/08/10 Javascript
Javascript控制div属性动态变化实例分析
2015/10/08 Javascript
js实现C#的StringBuilder效果完整实例
2015/12/22 Javascript
js实现文本框输入文字个数限制代码
2015/12/25 Javascript
基于javascript实现精确到毫秒的倒计时限时抢购
2016/04/17 Javascript
微信小程序  modal弹框组件详解
2016/10/27 Javascript
Bootstrap和Java分页实例第二篇
2016/12/23 Javascript
JS实现十字坐标跟随鼠标效果
2017/12/25 Javascript
linux 后台运行node服务指令方法
2018/05/23 Javascript
layui添加动态菜单与选项卡
2019/07/26 Javascript
[03:03]2014DOTA2西雅图国际邀请赛 Alliance战队巡礼
2014/07/07 DOTA
python数据库操作常用功能使用详解(创建表/插入数据/获取数据)
2013/12/06 Python
python 专题九 Mysql数据库编程基础知识
2017/03/16 Python
python实现批量按比例缩放图片效果
2018/03/30 Python
儿童编程python入门
2018/05/08 Python
python读取.mat文件的数据及实例代码
2019/07/12 Python
python 根据网易云歌曲的ID 直接下载歌曲的实例
2019/08/24 Python
python ftplib模块使用代码实例
2019/12/31 Python
jupyter notebook 使用过程中python莫名崩溃的原因及解决方式
2020/04/10 Python
如何使用python socket模块实现简单的文件下载
2020/09/04 Python
生产车间实习自我鉴定
2013/09/23 职场文书
小学语文国培感言
2014/03/04 职场文书
高校自主招生校长推荐信
2015/03/23 职场文书
瞿秋白纪念馆观后感
2015/06/10 职场文书
Lombok的详细使用及优缺点总结
2021/07/15 Java/Android