OpenCV-Python实现轮廓拟合


Posted in Python onJune 08, 2021

前言

什么是轮廓?

轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同 的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。

  • 为了更加准确,要使用二值化图像。在寻找轮廓之前,要进行阈值化处理 或者 Canny 边界检测。
  • 查找轮廓的函数会修改原始图像。如果你在找到轮廓之后还想使用原始图 像的话,你应该将原始图像存储到其他变量中。
  • 在 OpenCV 中,查找轮廓就像在黑色背景中超白色物体。你应该记住, 要找的物体应该是白色而背景应该是黑色。

在计算轮廓时,可能并不需要实际的轮廓,而仅需要一个接近于轮廓的近似多边形。比如矩形其实都是差不多的轮廓,都是长宽不相等且平行的四边形,那么只要提供一个近似的轮廓,我们就可以区分形状。

在OpenCV中,它给我们提供了cv2.boundingRect()函数来绘制轮廓的矩形边界,其完整定义如下:

def boundingRect(array):

array:前面已经介绍过,array是一个灰度图像,或者轮廓。

该函数返回3个值时,是矩形边界的左上角顶点的坐标值以及矩形边界的宽与高。返回4个值时,是矩形左上角顶点的x坐标,y坐标,以及宽高。

绘制椭圆的矩形边界

现在,我们还是使用前面的一张椭圆图形,如下图所示:

OpenCV-Python实现轮廓拟合

得到图形之后,我们使用上面的函数,计算该图像轮廓的4值,代码如下:

import cv2

img = cv2.imread("26_1.jpg")

# 转换为灰度图像
gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])
print(x, y, w, h)

运行之后,控制台输出如下内容:

OpenCV-Python实现轮廓拟合

这里我们得到了椭圆的矩形左上角坐标为(53,120),其宽高分别为272与84。

既然我们已经得到了其矩形边界的坐标以及宽高,那么我们可以开始绘制其矩形边界。前面提取轮廓绘制用的是cv2.drawContours()函数,这里同样也是。

代码如下:

import cv2
import numpy as np

img = cv2.imread("26_1.jpg")
cv2.imshow("img1",img)
# 转换为灰度图像
gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
x, y, w, h = cv2.boundingRect(contours[0])
rect=np.array([[[x,y],[x+w,y],[x+w,y+h],[x,y+h]]])#1
cv2.drawContours(img,[rect],-1,(255,255,255),2)#1

cv2.imshow("img2",img)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,其椭圆的矩形边界就被我们标记出来了,效果如下:

OpenCV-Python实现轮廓拟合

当然,这里我们还可以使用另一个函数cv2.rectangle()来绘制矩形边界,值需要更换上面代码中注释1的两个代码,具体如下所示:

cv2.rectangle(img, (x, y), (x + w, y + h), (255, 255,255),2)

最小包围矩形框

在OpenCV中,它还提供了cv2.minAreaRect()来绘制最小包围矩形框,其完整定义如下:

def minAreaRect(points):

其中points参数是轮廓,返回值为矩形特征信息,包括矩形的中心(x,y),宽高,以及旋转角度。

特别注意,minAreaRect函数的返回值并不能直接代入drawContours()函数中。因此,我们必须将其转换为符合要求的结构才能接着操作。通过cv2.boxPoint()函数就可以转换为符合drawContours()的结构参数。

还是上面那张图,不过我们用旋转后的椭圆原图,代码如下:

import cv2
import numpy as np

img = cv2.imread("26_4.jpg")

cv2.imshow("img1",img)
# 转换为灰度图像
gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
rect= cv2.minAreaRect(contours[0])
print(rect)
points=cv2.boxPoints(rect)
print(points)
points=np.int0(points)
print(points)
cv2.drawContours(img,[points],0,(255,255,255),2)

cv2.imshow("img2",img)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,图像效果以及控制台的输出信息如下:

OpenCV-Python实现轮廓拟合

OpenCV-Python实现轮廓拟合

这里我们可以清楚的看到minAreaRect()函数返回值的转换过程。先通过boxPoints()函数转换为drawContours()函数能接受的参数格式,然后通过取整转换为具体的像素坐标值。

最小包围圆形框

既然有最小包围矩形框,那么一定就有最小包围圆形框。在OpenCV中,它给我们提供cv2.minEnclosingCircle()函数来绘制最小包围圆形框。

函数的完整定义如下:

def minEnclosingCircle(points):

这里的参数与上面的points参数一致,但是其返回值并不相同,毕竟绘制圆形肯定与绘制矩形的参数肯定不一样。

它有两个返回值,一个是圆形的中心坐标(x,y),一个是圆形的半径r。下面,我们直接来绘制上面椭圆的最小包围圆形框。具体代码如下所示:

import cv2
import numpy as np

img = cv2.imread("26_4.jpg")

cv2.imshow("img1", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
(x, y), r = cv2.minEnclosingCircle(contours[0])
center = (int(x), int(y))
r = int(r)
cv2.circle(img, center, r, (255, 255, 255), 2)

cv2.imshow("img2", img)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,效果如下所示:

OpenCV-Python实现轮廓拟合

最优拟合椭圆

在OpenCV中,它给我们提供了cv2.fitEllipse()函数绘制最优拟合椭圆。其完整的定义如下:

def fitEllipse(points):

其中points参数与前文一致,而它的返回值是RotatedRect类型,这是因为该函数返回的是拟合椭圆的外接矩形,包括矩形的质心,宽高,旋转角度等信息,这些信息正好与椭圆的中心点,轴长度,旋转角度一致。

下面,我们来使用该函数绘制最优拟合椭圆,这里我们选取如上图所示的一张矩形图。具体代码如下:

import cv2

img = cv2.imread("27.jpg")

cv2.imshow("img1", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
ellipse = cv2.fitEllipse(contours[0])

cv2.ellipse(img, ellipse, (0, 0, 255), 3)

cv2.imshow("img2", img)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,效果如下所示:

OpenCV-Python实现轮廓拟合

最优拟合直线

在OpenCV中,它还提供了cv2.fitLine()函数绘制最优拟合直线,其完整定义如下:

def fitEllipse(points):

points:与前文一样,是轮廓

distType:距离类型。拟合直线时,要使输入点到拟合直线的距离之和最小。详细参数定义参考开发文档,这里不在赘述。

param:距离参数,与所选距离类型有关。当该参数为0时,自动选择最优值。

reps:用于表示拟合直线所需要的径向精度,通常该值被设定为0.01

aeps:用于表示拟合直线所需要的角度精度,通常该值被设定为0.01

对于二维直线,返回值line为4维,前两维代表拟合出的直线的方向,后两位代表直线上的一点。

下面,我们来直接使用代码绘制最优拟合直线。

import cv2

img = cv2.imread("27.jpg")

cv2.imshow("img1", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
ellipse = cv2.fitEllipse(contours[0])

cv2.ellipse(img, ellipse, (0, 0, 255), 3)

cv2.imshow("img2", img)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,效果如下所示:

OpenCV-Python实现轮廓拟合

对于绘制直线来说,我们需要获取绘制直线的起点以及终点,这里lefty为起点,righty为终点。

最小外包三角形

在OpenCV,它还提供了cv2.minEnclosingTriangle()函数来绘制最小外包三角形。其完整定义如下:

def minEnclosingTriangle(points, triangle=None):

其中points与前文类似,其返回值triangle为外包三角形的三个顶点集。

下面,我们直接构建最小外包三角形,具体代码如下:

import cv2

img = cv2.imread("27.jpg")

cv2.imshow("img1", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

area, trg1 = cv2.minEnclosingTriangle(contours[0])
print(area)
print(trg1)
for i in range(0, 3):
    cv2.line(img, tuple(trg1[i][0]), tuple(trg1[(i + 1) % 3][0]), (0, 255, 0), 2)

cv2.imshow("img2", img)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,效果如下:

OpenCV-Python实现轮廓拟合

需要注意的是,在cv2中没有直接绘制三角形的函数,所以我们通过绘制三条直线,绘制三角形,minEnclosingTriangle()函数第一个返回值为三角形面积,第二返回值是三点坐标。

逼近多边形

在OpenCV中,它还提供了cv2.approxPolyDP()函数构建指定边数的逼近多边形。其完整定义如下:

def approxPolyDP(curve, epsilon, closed, approxCurve=None):

curve:轮廓

epsilon:精度,原始轮廓的边界点与逼近多边形边界之间的最大距离

closed:布尔类型。为True时,表示逼近多边形是封闭的。为False时,biao表示毕竟多边形是不封闭的。

approxCurve为该函数的返回值,是逼近多边形的点集。。

下面,我们来实现各类逼近多边形的绘制,代码如下:

import cv2

img = cv2.imread("24.jpg")

list=[0.1,0.09,0.055,0.05,0.02]

cv2.imshow("img", img)
# 转换为灰度图像
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

ret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)

for i, val in enumerate(list):
    epsilon = val * cv2.arcLength(contours[0], True)
    approx = cv2.approxPolyDP(contours[0], epsilon, True)
    cv2.drawContours(img, [approx], 0, (0, 255, 0), 2)

    cv2.imshow("img"+str(i), img)

cv2.waitKey()
cv2.destroyAllWindows()

运行之后,效果如下:

OpenCV-Python实现轮廓拟合

cv2.approxPolyDP()函数采用的是Douglas-Peucker算法,该算法的原理是首先从轮廓中找到距离最远的两个点,并将两个点相连。接下来,在轮廓上找到一个离当前直线最远的点,并将该点与原有直线连成一个封闭的多边形,此时得到一个三角形。以此类推四边形,五边形,六边形等。当前多边形的距离都小于函数cv2.approxPolyDP()的参数epsilon的值时,就停止迭代。

到此这篇关于OpenCV-Python实现轮廓拟合的文章就介绍到这了,更多相关OpenCV 轮廓拟合内容请搜索三水点靠木以前的文章或继续浏览下面的相关文章希望大家以后多多支持三水点靠木!

Python 相关文章推荐
Python 匹配任意字符(包括换行符)的正则表达式写法
Oct 29 Python
Python内置模块logging用法实例分析
Feb 12 Python
PyQt5每天必学之关闭窗口
Apr 19 Python
Python3处理HTTP请求的实例
May 10 Python
Windows下Python3.6安装第三方模块的方法
Nov 22 Python
pandas通过loc生成新的列方法
Nov 28 Python
对python中list的拷贝与numpy的array的拷贝详解
Jan 29 Python
linux查找当前python解释器的位置方法
Feb 20 Python
python获取网络图片方法及整理过程详解
Dec 20 Python
Python文字截图识别OCR工具实例解析
Mar 05 Python
Python 实现图片转字符画的示例(静态图片,gif皆可)
Nov 05 Python
python实现对doc、txt、xls等文档的读写操作
Apr 02 Python
python图像处理基本操作总结(PIL库、Matplotlib及Numpy)
Django drf请求模块源码解析
Python中OpenCV实现查找轮廓的实例
python字符串的多行输出的实例详解
Jun 08 #Python
Python机器学习之基于Pytorch实现猫狗分类
Python中json.load()和json.loads()有哪些区别
python 爬取哔哩哔哩up主信息和投稿视频
Jun 07 #Python
You might like
PHP序列号生成函数和字符串替换函数代码
2012/06/07 PHP
PHP简单判断字符串是否包含另一个字符串的方法
2016/03/25 PHP
php array_pop 删除数组最后一个元素实例
2016/11/02 PHP
PHP单例模式数据库连接类与页面静态化实现方法
2019/03/20 PHP
laravel实现按月或天或小时统计mysql数据的方法
2019/10/09 PHP
Javascript下判断是否为闰年的Datetime包
2010/10/26 Javascript
Knockout数组(observable)使用详解示例
2013/11/15 Javascript
js 获取、清空input type="file"的值示例代码
2014/02/19 Javascript
JavaScript中textRange对象使用方法小结
2015/03/24 Javascript
使用AngularJS创建自定义的过滤器的方法
2015/06/18 Javascript
谈谈我对JavaScript DOM事件的理解
2015/12/18 Javascript
jquery mobile 移动web(5)
2015/12/20 Javascript
javascript实现的猜数小游戏完整实例代码
2016/05/10 Javascript
微信小程序 登陆流程详细介绍
2017/01/17 Javascript
jQuery基于事件控制实现点击显示内容下拉效果
2017/03/07 Javascript
vue 实现 tomato timer(蕃茄钟)实例讲解
2017/07/24 Javascript
用vue封装插件并发布到npm的方法步骤
2017/10/18 Javascript
vue-router history模式下的微信分享小结
2018/07/05 Javascript
[01:02:32]DOTA2-DPC中国联赛 正赛 iG vs PSG.LGD BO3 第二场 2月26日
2021/03/11 DOTA
Python中让MySQL查询结果返回字典类型的方法
2014/08/22 Python
Python工程师面试题 与Python Web相关
2016/01/14 Python
pycharm执行python时,填写参数的方法
2018/10/29 Python
python 格式化输出百分号的方法
2019/01/20 Python
python3使用matplotlib绘制条形图
2020/03/25 Python
python实现雪花飘落效果实例讲解
2019/06/18 Python
python中 * 的用法详解
2019/07/10 Python
Python对Tornado请求与响应的数据处理
2020/02/12 Python
python传到前端的数据,双引号被转义的问题
2020/04/03 Python
浅谈keras使用中val_acc和acc值不同步的思考
2020/06/18 Python
Python类的继承super相关原理解析
2020/10/22 Python
英国皇家邮政海外旗舰店:Royal Mail
2018/02/21 全球购物
轻化专业学生实习自我鉴定
2013/09/20 职场文书
生产班组长岗位职责
2014/01/05 职场文书
营业员岗位职责范本
2015/04/14 职场文书
2015年语文教研组工作总结
2015/05/23 职场文书
创业计划书之寿司
2019/07/19 职场文书